Source code for Modules.ProbabilisticMarchingSquares.plot

from .probabilistic_marching_squares_stats import crossing_prob_squares_mc
from .probabilistic_marching_squares_vis import matplotlib_probabilistic_marching_squares_vis
[docs] def plot(F, isovalue, prob_contour=None, cmap='viridis', ax=None): """ Visualize the probabilistic marching squares result using matplotlib. Parameters: ----------- F : np.ndarray 3D array of shape (n, m, n_ens) representing the scalar field with ensemble members. isovalue : float The isovalue for which to compute the isocontour. prob_contour : np.ndarray, optional 2D array of shape (n-1, m-1) with probabilities of contour presence in each cell. If None, it will be computed using probabilistic_marching_squares function. cmap : str, optional Colormap for the probability map. Default is 'viridis'. ax : matplotlib axis, optional The axis to draw on. If None, a new figure and axis will be created. Returns: -------- ax : matplotlib axis The axis with the visualized probabilistic isocontour. """ if prob_contour is None: prob_contour = crossing_prob_squares_mc(F, isovalue) ax = matplotlib_probabilistic_marching_squares_vis(prob_contour, cmap, ax) return ax