Modules.ProbabilisticMarchingSquares package
Submodules
Modules.ProbabilisticMarchingSquares.plot module
- Modules.ProbabilisticMarchingSquares.plot.plot(F, isovalue, prob_contour=None, cmap='viridis', ax=None)[source]
Visualize the probabilistic marching squares result using matplotlib.
Parameters:
- Fnp.ndarray
3D array of shape (n, m, n_ens) representing the scalar field with ensemble members.
- isovaluefloat
The isovalue for which to compute the isocontour.
- prob_contournp.ndarray, optional
2D array of shape (n-1, m-1) with probabilities of contour presence in each cell. If None, it will be computed using probabilistic_marching_squares function.
- cmapstr, optional
Colormap for the probability map. Default is ‘viridis’.
- axmatplotlib axis, optional
The axis to draw on. If None, a new figure and axis will be created.
Returns:
- axmatplotlib axis
The axis with the visualized probabilistic isocontour.
Modules.ProbabilisticMarchingSquares.probabilistic_marching_squares module
- Modules.ProbabilisticMarchingSquares.probabilistic_marching_squares.probabilistic_marching_squares(F, isovalue, prob_contour=None, cmap='viridis', ax=None)[source]
Visualize the probabilistic marching squares result using matplotlib.
Parameters:
- Fnp.ndarray
3D array of shape (n, m, n_ens) representing the scalar field with ensemble members.
- isovaluefloat
The isovalue for which to compute the isocontour.
- prob_contournp.ndarray, optional
2D array of shape (n-1, m-1) with probabilities of contour presence in each cell. If None, it will be computed using probabilistic_marching_squares function.
- cmapstr, optional
Colormap for the visualization. Default is ‘viridis’.
- axmatplotlib axis, optional
The axis to draw on. If None, a new figure and axis will be created.
Returns:
- axmatplotlib axis
The axis with the visualized probabilistic isocontour.
Modules.ProbabilisticMarchingSquares.probabilistic_marching_squares_stats module
Modules.ProbabilisticMarchingSquares.probabilistic_marching_squares_vis module
- Modules.ProbabilisticMarchingSquares.probabilistic_marching_squares_vis.matplotlib_probabilistic_marching_squares_vis(prob_contour, cmap='viridis', ax=None)[source]
Visualize the probability map of isocontour presence using matplotlib.
Parameters:
- prob_contournp.ndarray
2D array of shape (n-1, m-1) with probabilities of contour presence in each cell.
- cmapstr, optional
Colormap for the probability map. Default is ‘viridis’.
- axmatplotlib axis, optional
The axis to draw on. If None, a new figure and axis will be created.
Returns:
- axmatplotlib axis
The axis with the visualized probabilistic isocontour.
Module contents
ProbabilisticMarchingSquares Module This module provides functionality for performing probabilistic marching squares on 2D datasets with uncertainty. It includes methods for calculating cell crossing probabilities and visualizing the results using matplotlib.