Modules.ProbabilisticMarchingTriangles package
Submodules
Modules.ProbabilisticMarchingTriangles.probabilistic_marching_triangles module
- Modules.ProbabilisticMarchingTriangles.probabilistic_marching_triangles.probabilistic_marching_triangles(F, points, triangles, isovalue, prob_contour=None, cmap='viridis', ax=None)[source]
Visualize the probabilistic marching triangles result using matplotlib.
Parameters:
- Fnp.ndarray
2D array of shape (n_points, n_ens) representing the scalar field with ensemble members.
- pointsnp.ndarray
2D array of shape (n_points, 2) with point coordinates.
- trianglesnp.ndarray
2D array of shape (n_triangles, 3) with triangle indices.
- isovaluefloat
The isovalue for which to compute the isocontour.
- prob_contournp.ndarray, optional
1D array with probabilities of contour presence in each triangle. If None, it will be computed using probabilistic_marching_triangles function.
- cmapstr, optional
Colormap for the probability map. Default is ‘viridis’.
- axmatplotlib axis, optional
The axis to draw on. If None, a new figure and axis will be created.
Returns:
- axmatplotlib axis
The axis with the visualized probabilistic isocontour.
Modules.ProbabilisticMarchingTriangles.probabilistic_marching_triangles_stats module
Modules.ProbabilisticMarchingTriangles.probabilistic_marching_triangles_vis module
- Modules.ProbabilisticMarchingTriangles.probabilistic_marching_triangles_vis.matplotlib_probabilistic_marching_triangles_vis(points, triangles, prob_contour, cmap='viridis', ax=None)[source]
Visualize the probability map of isocontour presence using matplotlib.
Parameters:
- pointsnp.ndarray
2D array of shape (n_points, 2) representing the coordinates of the points.
- trianglesnp.ndarray
2D array of shape (n_triangles, 3) representing the triangulation of the points.
- prob_contournp.ndarray
1D array of shape (n_triangles,) with probabilities of contour presence in each triangle.
- cmapstr, optional
Colormap for the probability map. Default is ‘viridis’.
- axmatplotlib axis, optional
The axis to draw on. If None, a new figure and axis will be created.
Returns:
- axmatplotlib axis
The axis with the visualized probabilistic isocontour.
Module contents
ProbabilisticMarchingTriangles Module This module provides functionality for performing probabilistic marching triangles on 2D triangular meshes with uncertainty. It includes methods for calculating triangle crossing probabilities and visualizing the results using matplotlib.