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ABSTRACT

Accurate forecasts have a direct impact on how we prepare for different weather events
at personal, regional, and global levels. Many of the current numerical weather prediction
(NWP) systems use legacy codes that are not adequately designed to take advantage of
current and future modern compute resources. As we prepare for the Exascale era and the
next generation of weather forecast systems, the ability of theses codes to efficiently use
the compute resources is paramount for meeting the time requirement of forecasting and
the desired resolution of 1 km. Many of the NWP codes are multidisciplinary in nature,
combining building blocks from various areas of physics and atmospheric sciences which
introduces the challenge of stitching these building blocks together. For example, some
NWP systems use different meshes for the dynamics and the physics. This difference
introduces negative and nonphysical quantities when mapping between physics and
dynamics meshes. In this context, a mapping that does not preserve positivity leads
to unstable simulation and a positive bias in the prediction of quantities such as moisture.
This research focuses on 1) investigating different approaches for accelerating the physics
schemes in NWP codes; and 2) developing a high-order positivity-preserving method
(https://github.com/ouermijudicael/HiPPIS) for mapping solution values between dif-

ferent meshes.


https://github.com/ouermijudicael/HiPPIS

For Zambende (father), Rosalie (mother), and Melissa (wife)
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Accurate weather forecasting has a direct impact on how we prepare for different
weather events at personal, regional, and global levels. For example, accurately predicting
severe weather events helps save lives, minimize economic losses, and support emergency
management and mitigation. The Weather Research and Forecasting (WRF) [97] model is
an example of a widely adopted numerical weather prediction (NWP) software suite used
by atmospheric researchers and weather forecasters at operational centers worldwide. WRF
was developed to help scientists study and better understand weather phenomena.

The improvements to NWP and the WRF model have been made possible because
of the advances in science and technology over several decades. These advances are
tightly coupled with the availability and improvement of computational resources. Fig.
taken from [74], shows the computational performances required for weather and
climate prediction at different scales. For example, running global NWP models with 1 km
resolution requires solving about 1000 prognostic variables over 10% grid points with small
time steps for multiple ensemble members [2]. The increase in resolution allows for physical
processes to be replaced by explicit representations based on fundamental principles. These
simulations require extremely large computational resources, sophisticated computational
techniques, and numerical methods to efficiently utilize large-scale systems. The Exascale
systems such as Frontier are possible candidates for reaching the desired resolution of 1 km.
However, running NWP codes on such systems presents several performance challenges
that need to be addressed to be able to reach the desired resolution. As a part of the effort to
modernize and advance NWP for exascale systems and beyond, this dissertation focuses on:

1) investigating different approaches for accelerating the physics schemes in NWP codes;
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Fig. 1.1: Scales in weather and climate prediction versus computational resources required

to resolve them [74].

and 2) developing a positivity-preserving mapping between the physics and dynamics

coupling (PDC) in NWP.

1.1.1 Optimization of Physics Schemes

As part of the effort to prepare NWP for the exascale era and beyond, the first part
of this dissertattion focuses on developing performance optimization techniques to help
accelerate the physics schemes in NWP codes. The physics schemes represent the physical
parameterization of processes that are unresolved at the grid resolution. These legacy
physics codes are often written with complex control flow and key words such as exit,
goto, and cycle that prevent thread and vector parallelism at the node level. Traditionally,
MPI-level [31] distribution of serial codes has been the primary vehicle for exploiting
parallelism weather codes. In the last decade, various computational architectures have
increased the core counts per node, decreased the clock frequency, and adopted wide SIMD

vector units. This growing complexity of computing architectures makes it difficult to



develop and maintain performance-portable codes. For this reason, codes such as WRF
must be restructured to leverage thread and SIMD parallelism on modern architectures
while maintaining data and temporal locality.

One example of a modern code written with future architectures in mind is the Navy
Environmental Prediction System Utilizing a Nonhydrostatic Engine (NEPTUNE) [49].
NEPTUNE couples the scalable dynamical core NUMA, proposed by Giraldo et al. [34],
with physics schemes, such as the WSM6 and GFS, for unresolved physical processes. For
instance, WSM6 uses a physical parameterization that simulates processes in the atmosphere
that cause precipitation in the form of rain, snow, graupel, water vapor, cloud water, and
cloud ice. The dynamics part of NEPTUNE is both fast and scalable [73], but one of a
number of remaining challenges is the performance of the physics routines. For this reason,
the work in this dissertation focuses on optimizing GFS and WSM6 using approaches that
have applications to other numerical methods. These performance optimizations focus on
restructuring the legacy physics code to enable and improve parallelism on computational
nodes. The optimization efforts described here target the Intel multicore systems and
potential future computer architectures, which may employ similar multicore architectures
that achieve performance through vector units. This work employs OpenMP 4 as a vehicle
for portability across various platforms, as OpenMP 4 is a well-established and widely
adopted interface for shared-memory parallelism. Node level performance is necessary for
efficiently using large-scale systems to help reach the desired 1 Km resolution for global

NWP.

1.1.2 Positivity-Preserving Mapping

The second part of this dissertation introduces a novel high-order data-bounded and
positivity-preserving interpolation and evaluates the use of both methods for mapping
solutions values between physics and dynamics meshes. A number of key scientific
computing applications that are based upon high-order methods over tensor-product grid
constructions, such as numerical weather prediction (NWP) and combustion simulations,
require property-preserving interpolation. Property preservation often manifests itself
as a requirement for either data boundedness or positivity preservation. The particular

application motivating this work is the NWP code NEPTUNE. NEPTUNE makes use of



the Nonhydrostatic Unified Model of the Atmosphere (NUMA) [34] three-dimensional
spectral element dynamical core, but currently uses physics routines that were developed
assuming uniform grid spacing. At least two options are available for combining these two
NWP building blocks: either 1) evaluate the physics routines at the (nonuniformly spaced)
quadrature points on the spectral element with an acknowledgment that a modeling “crime"
has been accomplished; or 2) interpolate between the grid (quadrature points) on which
the dynamics is calculated to a grid on which the physics is calculated, and hence incur an
interpolation error. Since there is a long-standing history of using the validated physics
routines designed for use on uniformly spaced grids, there is a strong incentive to apply
the second option. However, interpolating density or other key physical quantities without
accounting for property preservation may lead to negative values that are nonphysical
and result in inaccurate representations and/or interpretations of the physical data. For
example, Skamrock et al. [98] demonstrated that not preserving positivity may lead to a

positive bias in a predicted physical quantity of interest (e.g., prediction of moisture).

1.2 Overview of WRF/NEPTUNE

The Weather Research and Forecasting (WRF) [97] Model is open-source NWP software
developed for both atmospheric research and operational forecasting needs. WRF uses
different dynamical cores to solve to fundamental governing equations in NWP. The
advanced research model (ARW) [97] and the nonhydrostatic mesoscale model (NMM) are
example of widely used dynamical cores/solvers in WRE. The WRF model include several
physics packages used for parameterization. As with many other computational models,
significant effort is put into modernizing numerical weather codes for current and future
architectures. In the case of weather codes, the goals are to improve the accuracy and reduce
the time requirements of forecasts.

The code optimization work described here is related to an activity to improve the
performance of the Navy Environmental Prediction System Utilizing a Nonhydrostatic
Engine (NEPTUNE) [49]. The NEPTUNE code couples the Nonhydrostatic Unified Model
of the Atmosphere (NUMA), of Giraldo et al. [34], with physics schemes such as the
WSM6 and GFS schemes considered here. The same physics schemes are used in both

NEPTUNE and WRE. NUMA is novel in that it makes use of a three-dimensional hexahedral



spectral element technique with a sphere-centered Cartesian coordinate system. The NUMA
spectral element method is potentially a good choice for modern computer architectures as
it has relatively large floating point operations count for a relatively small communication
footprint, which helps with large scalability. However, to make use of this potential for
good performance, it is important to ensure that the appropriate physics schemes, such as
WSMB6 and GFS, perform well. The first part of this dissertation evaluates and develops
performance approaches for the physics schemes in NEPTUNE. Given the same physics
routines are used in both NEPTUNE and the WRF models, the performance optimization
strategies developed for the physics routines are suitable for both NEPTUNE and WRE.
The dynamical core used in NEPTUNE is different from the one in the WRF model. For
example, the AWR model uses weighted essentially non-oscillatory methods to solve the
fundamental PDE equations whereas NUMA, used in NEPTUNIE, is based on high-order
spectral methods [34]. Whereas the same mesh is used for the physics and dynamics
calculations in the WRF model, NEPTUNE uses different meshes and the solution values
are mapped from between the meshes. The interpolation methods developed in this
dissertation for preserving positivity when mapping solution values between meshes is not
required for the WRF models because the same mesh is used for both Physics and Dynamics.
However, a positivity-preserving method is required used in cases where the meshes are
different, and preserving positivity of quantities such mass, density, and concentration are

required.

1.3 Contributions
We propose to advance NWP forecasting and accuracy by: 1) developing techniques
to improve computational performance of physics schemes on current and emerging
architecture; and 2) introducing an interpolation method to preserve positivity and improve

accuracy in physics-dynamics coupling.

e The first contribution, presented in Chapter[2} outlines code transformations necessary
to enable thread vector parallelism in NWP. This research effort resulted in the
publication of [79]. Legacy codes often use complex control flow and keywords
such as exit and goto that prevent parallelism because in these cases the termination

criteria are not known a priori. Ouermi et al. [79] use WSM6 to demonstrate the



transformation required to enable parallelism without a full rewrite of the routines.
Chapter 2] dissects WSM6, a micro-physics scheme used in NEPTUNE, and examines
OpenMP optimization of individual, using synthetic examples and subsequently in
WSMB6. This study incorporates the overhead associated with thread invocation and
uses OpenMP directives for thread and vector parallelism on KNL. Extending the
lessons learned from the synthetic examples to WSM6 delivers over 50x speed-up

over serial for several loops.

The second contribution, presented in Chapter 3 introduces optimization approaches
that consist of further code restructuring and data layout transformations to improve
shared memory parallelism. This effort has led to the publication of [80] and [81].
Parallelization of physics schemes is challenging because of different parameterization
models and the adaptive state transition in each model that leads to load imbalances.
Both [80] and [81] couple the thread-local structure of arrays (thread-local SOA) with
code and data reorganization to expose more parallelism and locality and reduce
memory traffic. The studies and examples in Chapter |3| demonstrate the benefits
of a high-level optimization using thread-local SOA, coupled with low-level SIMD
using OMP SIMD. The optimized versions of WSM6, GFS physics, and GFS radiation
run 70, 27, and 23 times faster, respectively, on KNL, and 26, 18, and 30, times
faster, respectively, on Haswell compared to their respective original serial versions.
Although this work targets WRF physics schemes, the findings are transferable to
other performance optimization contexts and provide insight into the optimization of
codes with complex physical model models for present and near-future architectures

with many core and vector units.

The third contribution, presented in Chapter 4] develops new data-bounded inter-
polation (DBI) and positivity-preserving interpolation (PPI) methods that preserve
data boundedness and positivity for function approximation and mapping solution
values between different meshes. This research is published in [82]. Due to physical
constraints, quantities such as mass, concentration, density, and the cloud mixing ratio
must remain positive when mapping between different meshes. Building on previous

work by Berzins [5], the work in Chapters 4| improves upon the DBI method and
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introduces a new constrained PPI approach that can be used to ensure that positivity
is preserved when mapping solution values between nonuniform structured meshes.
The DBI and PPI methods provide theoretical estimates for sufficient conditions used
to ensure data boundedness and positivity preservation. The new approach used here
both generalizes the DBI method to nonuniform meshes and extends the approach
to preserve positivity (positivity-preserving interpolation PPI) rather than the more

restrictive data-bounded approach in [5].

e The fourth contribution, presented in Chapter [f|land [f] is open-source software for
high-order data-bounded and positivity-preserving interpolation (HPPIS) and an
extensive evaluation of the DBI and PPI methods for function approximation and
mapping data values between meshes with examples pertaining to NWP. This effort
led to a technical report [77] and a manuscript submitted for publication [78]. The new
approaches are compared against several typical algorithms in use on a range of test
problems. The results obtained show that the new methods are competitive in terms
of observed accuracy while at the same time preserving the underlying positivity
of the functions being interpolated. The different test functions include smooth, C°-
continuous, discontinuous, and steep-gradients. The comparison undertaken in this
chapter focuses on how accurately the different methods can represent this underlying
set of test examples, including representative weather examples. In addition to the
software, this work provides an analysis of the mapping error in the context of
PDEs, uses several one-dimensional and two-dimensional numerical examples to
demonstrate the benefits and limitations of HPPIS, and introduces different strategies
to improve locality, vectorization, and overall, the performance of the data-bounded

and positivity-preserving interpolation methods in HPPIS.

1.4 Outline

The remaining chapters of the dissertation are organized as follows: Chapter 2]investi-
gates parallelism challenges in NWP codes using WSM6 as a starting example. These chal-
lenges are addressed by developing and evaluating different code restructuring approaches
to enable thread and vector parallelism in NWP codes. In addition, Chapter 2|evaluates

the overhead associated with using OpenMP directives for thread and vector parallelism.



Chapter ]3| focuses on improving the performance of NWP physics scheme by refining
the data and temporal locality and further extending the code restructuring to expose
more parallelism. These data structures and code transformations employ thread-local
structure of arrays to increase locality vectorization. The second part of this dissertation
starts with Chapter {4, which introduces the mathematical framework developed to build a
new data-bounded and constrained positivity-preserving method. Chapter [5| presents a set
of test examples used to compare both the data-bounded and positivity-preserving methods
against other interpolation methods. Chapter [6|provides a description of an open-source
software implementation of the DBI and PPI methods and evaluates both methods for
function approximation and for mapping solutions values between meshes with examples
pertaining to NWP. Chapter 7| provides concluding remarks and potential future research

directions in preparation for NWP codes for Exascale systems and beyond.



CHAPTER 2
PARALLELISM CHALLENGES IN WRF CODES

This chapter investigates the parallelism challenges encountered in WRF physics schemes
with a particular focus on WSM6 single-moment 6-class [44], as a starting example. We
dissect the WSM6 single-moment 6-class [44] microphsyics code in the context of NEPTUNE
[49] and examine OpenMP optimization of individual loops, first using synthetic examples
and subsequently in WSM6 itself. The experiments suggest several interesting findings —
particularly involving thread invocation time on Xeon and KNL and the effectiveness of
OMP SIMD on code with branching and nested subroutines. Extending these lessons to
WSMS, straightforward OMP DO SIMD constructs can deliver greater than 50x speed-up
over the serial versions for several loops. Moreover, although not the most effective,
low-level OpenMP with OMP DO SIMD can be a valid approach for accelerating serial
codes with minimal changes to the source code.

The WRF single-moment 6-class microphysics scheme (WSM6) is a physical parameter-
ization that simulates processes in the atmosphere that cause rain, snow, graupel, water
vapor, cloud water, and cloud ice. WSM6 is an improved version of WSM5 that introduces
graupel particles and other variables to better model the precipitation of hydrometeors.
The computation in the scheme is organized along both horizontal and vertical directions.
There is no interaction among the horizontal grid points, which allows straightforward

parallelism cases.

2.1 Background
Traditionally, MPI-level [31] distribution of serial codes has been the primary vehicle
for exploiting parallelism in these predominately serial Fortran weather codes. However,
in the last decade in particular, computational architectures have increased core counts,

decreased clock speeds, and adopted wide SIMD vector units. The Intel Xeon Phi Knights
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Landing (KNL) [99] architecture, for example, employs dual 8-lane double precision (DP)
floating point units on each of 64 cores running at 1.3 GHz. MPI alone is not suited for this
fine granularity; codes must be rearchitected to exploit thread and SIMD parallelism.

OpenMP [76] is a compelling model for portable parallelism in that it requires relatively
little modification of potentially large, complex codes. However, actual best practices for
OpenMP vary widely with the code in question, compiler implementation, and underlying
architecture. In the past, most effective OpenMP optimizations have used high-level
parallel constructs for threading (i.e., mirroring MPI-level parallelism), carefully aligned
arrays, and explicit rewrites to eliminate branching. These optimizations are no doubt
effective, but require significant modification of existing codes. However, new architectures
such as KNL boast lower thread creation times and no longer carry the same penalty for
unaligned memory access. OpenMP 4 features such as OMP SIMD promise control over
how vectorization is expressed, beyond the autovectorization capabilities of the compiler.
Consequently, as OpenMP matures, “naive" approaches may prove almost as effective as
wholesale rewrites.

Various optimization approaches have been applied to different components of NEP-
TUNE and other weather prediction systems. Michalakes et al. [67] optimized the Weather
Model Radiative Transfer Physics by restructuring the code to expose concurrency, vector-
ization, and locality. In this approach, they explicitly reorganized the arrays dimension,
and lowered the inner loop size to fit into the vector lane in order to take advantage of the
vector units. These optimizations yielded about 3x speed-up.

OpenMP is increasingly becoming the standard for shared memory parallelism. It
offers a simple high-level abstraction for thread and vector parallelism. In order to
leverage OpenMP features, different groups had investigated the overheads associated with
OpenMP directives [6]], [7], [8]], [57]. The overheads are dependent not only on the OpenMP
implementation but also on the architecture. LaGrone et al. [57] developed a benchmark
for measuring the overhead associated with the tasking model and the synchronization
in OpenMP on 2.27 GHz 8-core Intel Xeon Nethalem E5520 processors. Dimakopoulos et
al. [20] studied OpenMP overheads under nested parallelism for different compilers. In
both these studies, the authors extended the EPCC benchmark to include the OpenMP

directives of interest. In this work, we investigated the overheads on the Intel Knights
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Landing and the effort necessary to minimize such overhead.

2.2 Experimental Setup and Methodology
221 Methodology and Measurement Parameters
In order to systematically and rigorously investigate the performance bottlenecks in

WSMBS, this work used a methodology that consisted of four steps.

1. Understanding code: This consisted of analyzing the loop structures and the data

dependencies that exist among the loops.

2. Identifying bottlenecks: This step profiles the code using Intel VTune and wall clock

timers to identify the bottlenecks.

3. Building and testing standalone experiments base on bottlenecks: We designed
standalone experiments to address the bottlenecks identified in the previous steps.
These experiments allow us to identify which approach is better suited for a specific

bottleneck in WSM6.

4. Applying findings to WSM6: The findings in step three guide the different optimiza-

tion decision in WS6 loops.

This section summarizes experiments conducted to explore various optimization strate-
gies for the WRF WSM6 module on the Intel Knights Landing (KNL). This effort focuses
on understanding the KNL and the steps necessary to effectively exploit the resources
offered by the KNL architecture. Performance of a given code is evaluated using seven
attributes: number of threads, serial time, parallel time, work/thread, overhead, speed-up,

and efficiency.

e Overhead: the overhead associated with thread creation, thread binding, scheduling,
etc. can be defined as in [57]:

nXxT,—Ts
n

Overhead = (2.1)

where 7 is the number of threads, T is the serial time, and T, is the parallel time.
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e Work/thread: this corresponds to the average work, in Floating Point Operations Per
Second (FLOPS), per thread. The work per thread is calculated by dividing the total

amount of work in a loop by the number of threads used:

work in loop
number of threads’

Wihread = (2'2)

o Efficiency:

Ef ficency = - TS;F (2.3)
Ly

where 7 is the number of threads, T is the serial time, and T, is the parallel time.

2.2.2 KNL Architecture

This study used KNL because it was the intended architecture to be used for NEPTUNE.
The insights and code transformations required for parallelism are transferable to other
multicore systems. The Intel Knights Landing architecture consists of 36 tiles interconnected
with a 2D mesh, MCDRAM of 16G High Bandwidth, and one socket. It has a clock frequency
of 1.3 GHz, which is lower than the 2.5 GHz of Haswell. The Knights Landing tile is the basic
unit that is replicated across the entire chip. The tile consist of two cores, each connected to
two vector processing units (VPUs). Both cores share a 1 MB L2 cache. Two AVX-512 vector
units process eight double-precision lanes each; a single core can execute two 512-bit vector
multiply-add instructions per clock cycle. The results and experiments presented in this

chapter use the default thread and processor binding.

2.3 Standalone OpenMP Fortran Experiments
This section describes standalone experiments designed to verify the functionality of
OpenMP, and mimic the behavior of WSM6 in a minimal reproducible fashion. In the

following pseudocode, work(i, j) denotes computations similar to
a(i,j,1) =0.1xb(i,j,1)+c(i,j,1)/d(ij,1).

The computation is always the same, but different outer dimensions are used to simulate

access of multiple arrays. This behavior is similar to the array operations in WSMe.
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2.3.1 Overhead Associated with OpenMP on KNL

2.3.1.1 Overhead Per Thread Minimization

This experiment analyzes different methods that aim to minimize the overhead /thread.
It determines the amount of work in FLOPS per thread required to minimize the overhead
and maximize the speed-up. Synthetic examples similar to the loops in WSM6 are used for
this experiment. Code 1, shown below, is used to measure a baseline overhead. Code 2 is
used to analyze the overhead/thread of a WSMé-like loop. The variables ie and je are 10592,
and 39, respectively. In theory, given “sufficient" work for each thread, the performance

results from Code 2 should be comparable to Code 1 results.

Code 1: Code2:
1 '$0MP PARALLEL 1 '$OMP PARALLEL
2 '$0MP DO 2 1$0MP DO
3 DO i=1,100 3 do j=1, je
4 work (i) 4 do i=1, ie
5 ENDDO 5 work (i, j)
6 '$OMP END DO 6 end do
7 '$OMP END PARALLEL 9 end do
7 1$0MP END DO
8 1$0MP END PARALLEL

The results from Table[2.T|show that the average overhead/thread is less than 1 microsecond.
By increasing the number of threads, the number of FLOPS per thread decreases. This
decrease causes the overhead per thread to increase. The minimal overhead/thread, 0.1
microsecond, is observed at about 1 million FLOPS per thread. However, with 0.03 million
FLOPS per thread, the measured overhead remains below 1 microsecond.

The results from Table 2.2|show higher overheads and lower speed-ups compared to the
Table 2.1|results’. Code 2 is structured differently compared to Code 1. The computation in
work(i) is done with a 1D array, and the computation in work(i,j) is done with a 2D array.
Furthermore, the dimensions of the arrays are different. These differences explain different
observed overheads and speed-ups.

When the !$OMP PARALLEL and !$OMP DO are moved to the i loop or !$OMP
PARALLEL at the j loop and !$OMP DO at the i loop, larger overheads and lower speed-ups
occur, compared to the results from Tables[2.1jand
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Table 2.1: Performance results from Code 1.

n Ts Ty Overhead | wypeqq | Speed-up | Efficiency
2 | 92.797 | 46.500 0.22 1000000 1.995 99.78

4 | 92.865 | 23.335 0.51 500000 3.98 99.49

8 | 92.770 | 12.209 5.00 250000 7.59 94.98
16 | 92.826 | 6.608 12.26 125000 14.05 87.79
32192944 | 3.831 24.27 62500 24.26 75.82

Table 2.2: Modified Code 2 with !$SOMP DO placed outside j loop.

n | Ts(us) | Tp(pus) | Overhead (us) | wiyreaqs (FLOPS) | Speed-up | Efficiency %
2 | 27.636 | 15.848 2.03 1858896 1.74 87.19
4 | 27.352 | 8.099 1.26 929448 3.38 84.43
8 | 27.439 | 4.108 0.68 464724 6.68 83.49
16 | 27.422 | 2.586 0.87 232362 10.60 66.27
32 | 27.507 | 1.780 0.92 116181 15.45 48.29

2.3.1.2 Keeping Threads Active/Alive

Keeping threads active/alive during computation reduces thread creation and can-
cellation overheads. !$OMP PARALLEL is the directive that creates the pool of threads
(fork), and !$OMP END PARALLEL cancels the created threads (join). Thus, creating
threads at the beginning of a computation and canceling them at the end should reduce
the overhead associated with the creation and cancellation of threads. Furthermore, the
OpenMP environment variable KMP_BLOCKTIME can be used to keep threads alive for
a certain time. This experiment compares a single parallel block performance against
multiple parallel blocks. One would expect Code 4 to outperform Code 3. Because Code 4
is constructed with a single parallel block, it does not incur the thread creation overhead

caused by the multiple !$OMP PARALLEL blocks.

Code 3: Code 4:

1 1$0MP PARALLEL 1 1$0MP PARALLEL

2 '$0MP DO 2 1$0MP DO

3 do j=1, je 3 do j=1, je

4 do i=1, ie 4 do i=1, ie

5 3 x work(i,j) 5 3 x work(i,j)
6 end do 10 end do

7 end do 11 end do

8 1$0MP END DO 12 1$0MP END DO

9 1$0MP END PARALLEL

13 1$0MP DO
10 1$0MP PARALLEL 14 do j=1, je
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12
13
14
15
16
17
18

19
20
21
22
23
24
25
26
27

'$0MP DO
do j=1, je
do i=1, ie
3 x work(i,j)
end do
end do
'$OMP END DO
'$OMP END PARALLEL

'$OMP PARALLEL
'$OMP DO
do j=1, je
do i=1, ie
3 x work(i,j)
end do
end do
1$0MP END DO
'$OMP END PARALLEL

15
16
21
22
23

24
25
26
27
28
29
30
31

15

do i=1, ie
3 x work(i,j)
end do
end do
1$0MP END DO

1$0MP DO
do j=1, je
do i=1, ie
3 x work(i,j)
end do
end do
1$0MP END DO
'$0MP END PARALLEL

Table 2.3]and Table 2.4]show performance results for multiple parallel blocks and a single

parallel block, respectively. The single parallel block from Code 4 performs slightly better

than the multiple blocks case from Code 3, which supports the initial assumptions.

Table 2.3: Multiple parallel blocks with KMP_BLOCKTIME in Code 3.

n Ts T, Overhead | Speed-up | Efficiency
2 | 81.597 | 47.119 6.32 1.73 86.58
4 | 81.398 | 24.080 3.73 3.38 84.50
8 | 81.222 | 12.360 2.20 6.57 82.14
16 | 81.357 | 7.479 2.39 10.87 67.98
32 | 81.755 | 5.150 2.59 15.87 49.60

Table 2.4: Single parallel block with KMP_BLOCKTIME in Code 4.

n Ts Ty Overhead | Speed-up | Efficiency
2 | 81.597 | 46.300 5.50 1.76 88.12
4 | 81.398 | 23.560 3.21 3.45 86.37
8 | 81.222 | 12.021 1.87 6.75 84.46
16 | 81.930 | 7.188 2.07 11.39 71.24
32 | 81.755 | 5.028 2.47 16.26 50.81
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2.3.1.3 OpenMP Versus Pthreads Overhead

This experiment analyzes the overhead associated with thread creation and context
switches in the OpenMP and Pthreads libraries. In order to establish a fair comparison of
both libraries, the synthetic experiment has been done in C, because Pthreads does not have
an equivalent in Fortran.

Table 2.5shows the thread creation overhead and context switches measurements for
Pthreads and OpenMP. These results indicate that OpenMP has significantly higher thread
creation overhead compared to Pthreads. The context switch measurements observed
in OpenMP are slightly but not significantly higher than the ones in Pthreads but not
significant. These experiments show that the use of a single parallel block coupled with
the environment variable KMP_BLOCKTIME contributes to reducing the overheads and

increasing the speed-ups slightly.

2.3.1.4 KNL vs Haswell Overhead

Thread overhead is dependent on the implementation of OpenMP and the architecture
used. Here, performances of Code 1 on KNL and Haswell are compared. The results from
Tables 2.1 and [2.6| indicate that KNL has a lower overhead than Haswell. The average
overhead on KNL is about 0.51 whereas the overhead on Haswell is about 0.61. In addition,

the speed-ups observed on KNL are greater than the ones on Haswell.

Table 2.5: Thread creation and context switch overhead measurements with Pthreads and
OpenMP.

Pthreads OpenMP

n Thread creation | Context || Thread creation | Context

2 199 0.631 14311 6.017
4 183 0.736 8047 3.336

8 121 1.182 4209 1.375
16 107 1.067 4115 1.046
32 102 1.041 1654 0.797
64 99 1.035 1417 0.943
128 120 1.27 653 1.579
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Table 2.6: Performance results from Code 1 on Haswell.

n T Ty Overhead | wyyeqq | Speed-up | Efficiency
2 | 67.825 | 34.225 0.31 1000000 1.981 99.08

4 | 67.77 | 17.263 0.32 500000 3.925 98.14

8 | 67.729 | 9.079 0.61 250000 7.459 93.25
16 | 68.099 | 5.015 0.76 125000 13.579 84.86
32 | 67.973 | 2.861 0.73 62500 23.758 74.25

2.3.2 Thread Scalability
2.3.2.1 Base Case
The previous section analyzed examples of loops that do not exhibit significant com-
plexity. This section focuses on understanding the performance impact of function calls.
The example examined here is a loop with nested functions calls. This experiment analyzes
a base case that is used as a reference. Code 5 measures how its performance scales with

the number of threads before transformation.

Code 5 : WSM6 loop with conditionals and function calls

1 do k = kte, kts, -1

2 do i = its, ite

3 e

4 if(t(i,k).gt.t0c) then

5 ..

6 work2(i,k) = venfac(p(i,k),t(i,k),den(i,k))
7 if(qrs(i,k,2).gt.0.) then

8 c.

9 psmlt(i,k) = xka(t(i,k),den(i,k))
10 .

11 endif

12 if(qrs(i,k,3).gt.0.) then

13 R

14 pgmlt(i,k) = xka(t(i,k),den(i,k))
15 ce

16 endif

17 endif

18 enddo

19 enddo

A close analysis of Code 5 shows two function calls: xka and venfac. These functions are
implemented by calling two other functions, viscos and diffus. Furthermore, all the functions

call intrinsic math functions such as sgrt, for which most current compilers now emit vector
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instructions.

Table [2.7|shows that Code 5 scales up to eight threads. After eight threads, the overhead
increases drastically and the speed-up plateaus at about 9x. As mentioned before, Code 5 has
nested functions and conditionals. Such complexities may cause performance limitations
for threading and vectorization. Table 2.8/shows performance results from Code 5 with all
function calls and conditionals removed. By removing the function calls, the amount of
computation in the loop is significantly reduced. This reduction resulted in the serial time
in Table 2.8 being much smaller than that in Table Table 2.8 has significantly higher
speed-ups and lower overheads than Table These results indicate that the conditionals

and the function calls are responsible for the performance limitations observed.

2.3.2.2 Function Calls Performance Analysis

As mentioned above, Code 5 has nested function calls. This experiment compares the
performance of a modified version of Code 5 against Code 6. In the modified version of
Code 5, the conditionals have been removed but the function calls are left intact. In Code 6,

the function calls are replaced by some code that performs the same task as the functions.

Code 6 : WSM6 complex Code with no function calls.
1 '$0MP PARALLEL DEFAULT(shared) PRIVATE(i, k)
Table 2.7: Performance results from Code 5.

n Ts T, Overhead | Speed-up | Efficiency
2 | 2109.055 | 944.316 | -110.21 2.23 111.67
4 | 2107.635 | 499.088 -27.82 423 105.57
8 | 2109.226 | 262.901 -0.75 8.02 100.27
16 | 2109.020 | 234.1 102.28 9.01 56.30
32 | 2110.18 | 231.294 165.35 9.12 28.51
40 | 2109.158 | 218.183 165.45 9.67 24.16

Table 2.8: Code 5 without function calls and conditionals.

n Ts T, Overhead | Speed-up | Efficiency
2 | 90.567 | 57.241 11.95 1.58 79.11

4 190427 | 29.06 6.45 3.11 77.79

8 |90.480 | 14.7601 3.45 6.13 76.62
16 | 90.581 | 8.721 3.06 10.39 64.92
32 | 90.631 | 5.882 3.05 15.41 48.15
40 | 90.973 | 3.064 0.79 29.69 74.22
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2 1$0MP DO

3 do k = kte, kts, -1

4 do i = its, ite

5 Ce

6 '1-—work2(i,k) = venfac(p(i,k),t(i,k),den(i,k))

7 tempO = 1.496e-6 * (t(i,k)*sqrt(t(i,k))) / &
(t(i,k)+120) /den(i, k)

8 templ = 8.794e-5 * exp(log(p(i,k))* (1.81)) / t(i,k)

9 work2(i,k) = exp(log((tempO/templ))* ((.3333333))) &

10 /sqrt (temp0) *sqrt (sqrt (denO/den(i,k)))

1 '1-- xka(t(i, k), den(i, k))

12 temp3 = 1.414e3%1.496e-6 * (t(i,k)*sqrt(t(i,k)))/
(t(i,k)+120) /den(i, k)*den(i,k)

13 .

14 enddo

15 enddo

16 !'$0MP END DO
17 1$0MP END PARALLEL

The modified version of Code 5 yielded a maximum speed-up of about 3x whereas Code 6

yielded a maximum speed-up of 62x. Table 2.9|report the results from Code 6.

2.3.2.3 Subroutine Calls Performance Analysis
This experiment measures the performance impact of subroutine calls. Code 7 below

contains a subroutine call and a few conditionals.

Code 7

1 !$0MP PARALLEL DEFAULT(shared) PRIVATE(i,j,m,thread_id)
2 do j=1, je

3 thread_id = OMP_GET_THREAD_NUM()

4 1$0MP DO SIMD

Table 2.9: Performance results from Code 6.

n Ts Ty Overhead | Speed-up | Efficiency
2 | 1909.236 | 594.708 | -359.910 3.21 160.51

4 | 1909.292 | 297.209 | -180.114 6.42 160.60

8 | 1909.105 | 149.470 -89.17 12.77 159.65
16 | 1909.222 | 89.801 -29.52 21.26 132.88
32 | 1910.795 | 60.320 0.61 31.68 98.99
40 | 1910.146 | 30.584 -17.17 62.45 156.15




20

5 do i=1, ie

6 do m=1, M_LOOPS

7 #if OMPTEST_SUBROUTINE
8 call do_work(i,j)

9 #else

10 3 x work(i,j)

11 if (b(i,j,1) .gt. 0.0) then
12 3 x work()

13 endif

14 #endif

15 enddo

16 enddo

17 '$OMP END DO SIMD NOWAIT
18 end do

19 '$OMP END PARALLEL

20 subroutine do_work(i, j)

21 !$0MP DECLARE SIMD(do_work)
22 integer :: 1i,j

23 3 x work()

24 if (b(i,j,1) .gt. 0.0) then
25 3 x work(i,j)

26 endif

27 end subroutine do_work

Table reports the following experimental cases:
e case 1 represents results from Code 7 with OMP PARALLEL + OMP DO SIMD;

e case 2 represents results from Code 7 with OMP PARALLEL + OMP DO SIMD and

subroutine; and

e case 3 represents results from Code 7 with OMP PARALLEL + OMP DO SIMD,
subroutine and DECLARE SIMD on functions.

Table shows the performance results from Code 7. The DECLARE SIMD use in

this experiment does not have a significant performance impact. Table cases 2 and 3

Table 2.10: Code 7 results.
case | n | Ty | T, | Speed-up | Efficiency
casel | 64 | 69 | 1.46 47.26 73.84
case?2 | 64 | 69 | 1.45 62.09 74.35
case3 | 64 | 90 | 1.48 60.81 95.02
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report additional variations that were tested, as indicated by their captions. These results
show significant speed-ups, which indicates that a single-level (no nesting) subroutine
and conditionals are not a performance bottleneck, and various combinations of !{$OMP

PARALLEL and !$OMP SIMD yield significant speed-ups.

2.3.2.4 Nested Conditionals

This experiment focuses on studying the performance impact of conditionals. It com-
pares the performance of Code 9 against a modified versions of Code 6. The modified

version of Code 6 includes nested conditionals.

Code 9 : WSM6 loop with masking and no function calls.
1 compute bool_vall, bool_val2, and bool_val3
2 1$0MP PARALLEL DEFAULT(shared) PRIVATE(i, k)
3 !$0MP DO

4 do k = kte, kts, -1
5 do i = its, ite
6

7

tempO 1.496e-6 * (t(i,k)*sqrt(t(i,k)))/(t(i,k)+120) &
/den(i, k)

8 templ = 8.794e-5*exp(log(p(i,k))*(1.81))/t(i,k)

9 work2(i,k) = exp(log((tempO/templ))* ((.3333333))) &

10 /sqrt (temp0) *sqrt (sqrt (den0/den(i,k)))

11

12 compute resultl

13 ...

14 temp3 = 1.414e3%1.496e-6 * (t(i,k)*sqrt(t(i,k))) &
/(t(i,k)+120)/den(i, k)

15 ...

16 compute result2

17 final_result = (resultl*bool_vall + result2*bool_val2)&

*bool_valO
18 enddo
19 enddo

20 !'$0MP END DO
21 !$0MP END PARALLEL

The modified version of Code 6 obtains a maximum speed-up of about 8x. Using
SIMD decreases the speed-up to about 3x. SIMD fails to vectorize because of the nested
conditionals. Moving the conditionals outside the loops, as shown in Code 9, to address the

bottleneck yielded significant speed-ups and low overheads, as shown in Table These
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experiments indicate that nested conditionals hurt performance. Eliminating branching

yields significant improvements. This approach can be used in many of the WSM6 codes

that exhibit similar patterns.

2.3.3 Vectorization

2.3.3.1 OMP SIMD

This section analyzes the performance impact of SIMD. In this experiment, a simple

compute-only code is considered. It compares the performance of various parallel versions

and Code 8 against the serial version. Furthermore, the thread binding is done manually.

Code 8 : WSM6 loop with masking and no function calls
1 !$OMP PARALLEL DEFAULT(none) SHARED(a, b, c, d, je, ie,num_tasks)
'$0OMP PRIVATE(i,j,m,its,ite,Thread_id)
2  thread_id = omp_get_thread_num()
3 its = 1 + thread_id * num_tasks * VLEN
4 ite = min(its + num_tasks * VLEN - 1, ie)
5 do j=1, je
6 1$0MP SIMD
7 do i=its, ite
8 do m=1, 10
3 x work(i,j)
12 enddo
13 if (b(i,j,1) .gt. 0.0) then
14 3 x work(i,j)
17 endif
18 enddo

Table reports the following experimental cases:

e case 1 represents results from Code 8 with OMP DO placed right before the i loop;

e case 2 represents results from Code 8 with only manual implementation of thread

Table 2.11: Performance results from Code 9.

n Ts Ty Overhead | Speed-up | Efficiency
2 | 2102.487 | 691.904 | -359.34 3.04 151.93

4 | 2099.805 | 344.800 | -180.15 6.09 152.24

8 | 2099.784 | 172.063 | -90.41 12.20 154.25
16 | 2106.650 | 104.066 | -27.60 20.24 126.52
32 | 2112.524 | 69.479 3.46 30.40 95.02
40 | 2100.923 | 35.199 -17.32 59.69 141.22
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binding;
e case 3 represents results from Code 8 withwith OMP DO SIMD at the i loop; and

e case 4 represents results from Code 8 SIMD and manual implementation of thread

binding.

Table shows the speed-ups when the different directives are placed right before the
iloop. OMP PARALLEL + OMP SIMD yields the highest speed-up among the different

experiments.

2.4 Modernization of WSM6
24.1 Code Overview
The WSMB6 supercell test case of WSM6 consists of 27 loops around 10K (i) rows, with
three subroutines (slope_wsm6, nislfv_rain_plm, nislfv_rain_plmé) [51]. The last two
subroutines contain nontrivial control flow (cycle/goto statements). The other loops are
generally memory intensive, with significant branching. Applying the findings of the

standalone tests, WSM6 was modified with OpenMP directives as follows:
e OpenMP initialization code in init_microphysics() in mod_microphysics.f90;

e Consistent use of OMP PARALLEL and OMP DO SIMD as presented in case 3 of
Table

e Minor code modification to remove nested conditionals and function calls as demon-

strated in Code 9;

e Use of OMP PARALLEL sections around multiple loops as shown in Code 3 to reduce

thread invocation overhead;

¢ Elimination of false sharing and specification of PRIVATE variables ;

Table 2.12: Code 8 results.
case | n | Ty | T, | Speed-up | Efficiency

casel | 64 | 69 | 2.88 24 37.43
case2 | 64 | 69 | 0.63 109 171.13
case3 | 64 | 69 | 0.614 112 175.59

case4 | 64 | 69 | 0.614 112 175.59
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e Merging smaller loops involving the same arrays, to mitigate thrashing; and

e Using C preprocessor macros to enable and measure runtime of parallel, serial or both

implementations.

The decision to first pursue OMP DO SIMD, despite worse performance than OMP
SIMD with manual indices from Table was due to the presence of many temporary
arrays in between loops and dependency-heavy subroutines in WSM6. Moreover, the aim is
to first explore what naive “low-level" OpenMP parallelization could deliver with minimal

reorganization of the code.

242 WSMB6 Results

Tests were conducted on a four-socket (Haswell) Intel Xeon E7-8890 v3 with 3 TB RAM,
and Intel Xeon Phi 7210 (“Knights Landing", or KNL) with 16 GB MCDRAM and 96 GB
DRAM. The compiler was Intel Parallel Studio 2016, update 3 (build 67), due to issues
with Parallel Studio 2017 in other modules within NEPTUNE. Results up to all cores (64
cores on KNL, 72 on Haswell) on these respective systems are shown in Table for
different values of OMP_NUM_THREADS. We see limited benefit from hyperthreading on
either platform. Though not shown in the table, we found that 18 cores of KNL performed
2.12x better than a single-socket equivalent Haswell (with OMP_NUM_THREADS=18).
Moreover, using the default maximum number of threads (144 on Haswell, 256 on KNL),
KNL performs roughly 2x faster than Haswell core-for-core, which suggests better scalability
on KNL than on Haswell. We note, however, that we used default thread affinity settings
(i.e., KMP_AFFINITY). Our Brickland-EX Haswell system has a nonconventional memory
architecture supporting up to 6 TB RAM, generally exhibiting higher intersocket latencies
than comparable Xeon workstations, which could affect performance. Further work may be

required to scale specifically on this platform.

2.5 Summary and Discussion
2.5.1 Scalability challenges
Although these results show good performance on KNL, the current implementation
does not scale well beyond 36 cores (two-socket equivalent) on Xeon. This scaling problem

is perhaps a result of slightly higher thread invocation time on Xeon, but is more likely



25

Table 2.13: Scalability and speed-up (over serial) on 72-core Haswell-EX and 64-core KNL
with different values of OMP_NUM_THREADS.

y | Haswell || KNL | KNL vs HSW |

n T, | Speed-up T, | Speed-up || KNL vs HSW
1 0.46 1 1.77 1 0.26
4 || 0.116 4 0.222 8 0.52

16 || 0.068 6.9 0.067 26 1

32 || 0.067 7.9 0.04 44 1.7

64 || 0.064 18 0.031 57 2.1

128 || 0.06 19 0.035 50 1.7

256 || 0.19 6 0.037 47 5

Table 2.14: Wall clock time measurements of individual WSM6 loops, in milliseconds, on
72-core Haswell-EX and 64-core KNL, using all available hardware threads.

] H KNL H Haswell ‘
Loop T, Ty T Ty
Initloops | 288x1073 | - [/292x1073| -
loop 1 16.8 1.19 6.76 1.58
loop 2 122 1.37 15.6 3.45
loop 5 46.8 1.28 15.9 1.58
loop 7 17.9 1.22 6.56 1.57
slope_wsm6 98.6 1.81 41.5 4.76
loop 8 19.1 1.33 7.77 2.10
rain_plm 260 - 39.0 -
rain_plm 220 - 62 -
loop 9-11 10.3 1.49 11.7 3.12
slope_wsm6 60.7 1.48 13.0 4.51
loop 12-14 176 2.37 36.1 1.86
loop 15-17 2.96 0.859 2.53 0.598
loop 18-19 102 2.26 13.1 2.36
slope_wsm6 59.7 1.77 12.5 4.42
loop 20-21 524 532 76.4 5.92
loop 22 246 432 119 9.91
loop 23 193 1.95 32.6 6.02
loop 24-26 156 2.99 26.8 3.65
loop 27 4.52 5.85 5.61 6.98
wsmb6 total 1860 38.9 440 64.3

due to the higher clock speed of that architecture and worse “base" speed-up of threads
compared to the serial version. Although multiple parallel sections scale well on KNL,
these standalone experiments with thread overhead suggest that fewer parallel sections
and use of manual indexing (i.e., OMP PARALLEL and OMP SIMD instead of OMP DO

SIMD directives) are necessary for better Xeon performance.
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Table 2.15: Speed-up over serial from Table 2.14l

KNL Haswell
Loop Speed-up | Efficiency % || Speed-up | Efficiency %

Init loops - - - -
loop 1 14.06 21.00 491 5.94
loop 2 89.10 139.14 4.53 6.28
loop 5 36.44 56.15 10.07 13.97
loop 7 14.67 22.92 4.16 5.80
slope_wsm6 54.56 85.12 8.71 12.08
loop 8 14.44 22.43 3.70 5.13

rain_plm - - - -

rain_plm - - - -
loop 9-11 6.90 10.80 3.73 5.20
slope_wsm6 40.87 64.08 2.95 4.00
loop 12-14 74.41 116.03 19.36 26.95
loop 15-17 3.45 5.38 422 5.87
loop 18-19 45.11 70.51 5.56 7.70
slope_wsm6 33.69 52.70 2.83 3.93
loop 20-21 98.48 153.90 12.93 17.92
loop 22 57.13 88.97 12.01 16.68
loop 23 99.53 154.64 5.42 7.52
loop 24-26 52.26 81.52 7.31 10.19
loop 27 0.77 1.20 0.80 1.11
wsmb total 47.81 74.71 6.91 9.50

2.5.2 Remaining bottlenecks

Nonparallelizable and poorly parallelizable subroutines in WSM6 and mod_microphysics
remain a bottleneck. Complicated subroutines with dependencies such as nislfv_rain_plm
and nislfv_rain_plm6 require extensive rewrites to achieve speed-up; currently only 2x
speed-up is achieved for the former. More significantly, horizontal-to-vertical memory
copies of arrays in both WSM6 and mod_microphysics in Neptune are difficult to parallelize,
achieving at best a 2x speed-up. These require further investigation. In addition to
bottlenecks originating from loops with dependencies, the microphysics code as a whole
remains bottlenecked by horizontal-to-vertical copying and integration of arrays. To
address this problem, one should consider interleaving these copy statements with parallel
computation, and re-evaluating how data are warehoused in the calling code. With
bottlenecks, the entire microphysics module achieves only a modest 3x improvement
over serial on KNL, and 2x on Xeon. Ultimately, we would like to restructure all WSM6

directives, moving from OMP DO SIMD to chunks with OMP SIMD and a single high-level
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OMP PARALLEL section, similar to the approach of Michalakes et al. [67]. This approach
will require parallelizing all remaining sections and eliminating copies of full arrays within

WSMe.

2.5.3 Flat vs. Cache Mode on KNL

The memory modes of the Xeon Phi KNL architecture are of significant interest in
many code modernization efforts. In “flat mode", the 16 GB MCDRAM are treated as
main memory by the OS; in “cache mode", the MCDRAM serve as a cache for larger pool
of DRAM (96 GB on the workstation). In principle, KNL hosts deployed in cache mode
incur higher cache miss costs, as memory is pulled from DRAM. WSM6 results showed a
negligible difference between flat and cache modes (in fact, an unexpected 1% advantage
for cache mode, which is within the 5% margin of error between individual time steps of the
microphysics code). The flat and cache configurations merit further investigations, but for
the current work we conclude the difference between flat and cache modes is not a major

factors in the runtime of WSM6.

2,54 Summary

Overall speed-ups achieved compared to serial versions are convincing: 57x over serial
version on KNL suggests 5.6% of peak (1024x, 64 cores x 16 SIMD lanes). Although these
results correspond only to easily parallelizable loops within WSMB6, this study encompasses
nontrivial code with branching, subroutines, and incoherent memory access. In all, the
WSM6 work is encouraging in that significant speed-up was possible with relatively small
changes to code — exactly what is desired in a code portability effort.

We have examined the impact of OpenMP directives on a Fortran-based WSM6 mi-
crophysics code in WREF. In standalone experiments, we measured the cost of thread
overhead and tested the effectiveness of various directives with and without OMP SIMD.
These results suggest that although greater scalability may be possible with high-level
OpenMP constructs, parallelization of dependency-free code sections is possible with few
modifications to the original code. Moreover, we have found cases in which straightforward
low-level OpenMP methodologies may work, delivering satisfactory 50x-100x speed-ups
over the serial version. The fact that modern compilers can emit reasonably efficient

threaded and SIMD instructions from complex code with branching, subroutines, and



unaligned arrays suggests the OpenMP methodology holds promise.
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CHAPTER 3

PERFORMANCE OPTIMIZATION
APPROACHES IN NWP PHYSICS SCHEMES

This chapter introduces high-level and low-level approaches for shared memory par-
allelism using thread-local structures of arrays (SOA). The thread local SOA is a layout
where a structure local to a thread and the fields inside the structure are arrays. The
high-level approach employed here consists of parallelizing large blocks of code at the
parent level in the call stack, whereas the low-level approach targets individual instructions.
Thread-local SOA and OMP SIMD are employed to accelerate computation in GFS and
WSM6 modules by improving data locality and taking advantage of thread and vector
parallelism. In addition, a static memory allocation process is used instead of a dynamic
memory allocation process to help improve the memory performance of the GFS code. As a
result of these optimizations, there has been a significant speed-up over serial versions of
the code and a previously optimized version [79]. For instance, the use of SOA coupled with
OMP SIMD for vectorization has led to significant speed-up improvements. The optimized
versions of WSM6, GFS physics, and GFS radiation run 70, 27, 23 and 26, 18, 30 times
faster on KNL and Haswell, respectively. In addition, these optimizations have enabled a
speed-up of 23.3 over a prior optimized version of WSM6 [79].

WSMS6, introduced in the previous chapter, is a physical parameterization that simulates
processes in the atmosphere that cause precipitation in the form of rain, snow, graupel,
water vapor, cloud water, and cloud ice. GFS is a weather forecast model developed by the
National Center for Environmental Prediction (NCEP). GFS is a coupled model composed
of an atmosphere model, an ocean model, a land/soil model, and a sea-ice model. The
optimization efforts target GFS physics and GFS radiation, the two most expensive calls
within the module driver. Similarly to WSM6, GFS has no dependencies along the horizontal

direction, thus making it amendable to performance improvement without the concern of
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communication.

3.1 Background

There has been significant activity recently on porting and optimizing NWP codes on
various new computer architectures. For example, Mielikainen et al. [69] optimized the
Goddard microphysics scheme on an Intel Xeon phi 7120P Knights Corner (KNC) [12] by
removing temporary variables to reduce the code memory footprint and by refactoring
loops for vectorization, leading to a 4.7 speed-up. Furthermore, Mielikainen et al. [70]
also optimized the Perdu-Lin microphysics scheme using the same approaches. Again,
these approaches resulted in a 4.7 speed-up using vector alignment and SIMD directives.
Similarly, Ouermi et al. [79] used a low-level optimization approach based upon OpenMP
4 [17] directives to improve the performance of WSM6 on the KNL. When combined with
minor code restructuring to enable and improve locality and vectorization, this approach
resulted in a speed-up of three on the whole of WSM6. This speed-up included unoptimized
(serial bottleneck) code sections.

In optimizing the Weather Model Radiative Transfer Physics on Intel KNL, Michalakes
et al. [68] focused on increasing concurrency, vectorization, and locality. Improving
concurrency involved increasing the number of subdomains to be computed by threads.
Vectorization and locality were improved by restructuring the loops to compute over
smaller tiles and exposing vectorizable loops. This effort led to a threefold speed-up over
the original 1.3 speed-up on Xeon Sandybridge.

Data layout plays a key role in performance optimization. The optimal data layout
minimizes the memory footprint, reduces cache misses, and allows better usage of vector
units. This study uses thread-local structures of arrays (SOA) data layout to improve
memory access [43]], [107] . The SOA approach and similar approaches have been used
to accelerate many scientific applications on various architectures. Henretty et al. [40]
used data layout transformation to improve the performance of stencil computations.
These optimizations removed alignment conflicts, reduced cache misses, and improved
vectorization. Woodward et al. [61], [106] used briquette data structures to accelerate a
Piecewise Parabolic Method (PPM) code by reducing memory traffic. A briquette is a small

sub-block of a uniform grid. The size of the briquette is chosen in relation to the cache
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size and vector unit. These data transformations have enabled high performance because
they reduce the memory footprint and traffic. In addition, such transformations improve
vectorization.

The work presented in this chapter relies on the OpenMP runtime system for task
scheduling and OpenMP “pragma" directives for parallelization. Other approaches could
be employed. Mencagli et al. [65] used a runtime support to reduce the effective latency
of interthread cooperation. This latency reduction is done with a “home-fowarding"
mechanism that uses a cache-coherent protocol to reduce cache-to-cache interaction. Buono
et al. [9] proposed a light-weight runtime system as an approach to optimize linear algebra
routines on Intel KNC [12]]. This runtime system focuses on efficient scheduling of tasks
from a directed acyclic graph (DAG) that is generated on the fly during execution. Danelutto
et al. [18] suggested a pattern-based framework for parallelization. This parallelization
approach targets known patterns that can be represented with well-known operations such
as map, reduce, scan, etc.

Although this work focuses on the Intel KNL and Haswell architectures, it is important
to point out that efforts have been made to port and optimize WRF physics schemes
for GPUs [71], [66], [84], [22]. GPU-based optimizations show better performance than
Intel KNC and KNL-based optimizations. For instance, Mielikainen et al. [71]], using
CUDA [75], were able to achieve a speed-up of two orders of magnitude. However, porting
to GPUs often requires significant code rewrites. The present work is part of larger effort to
develop and optimize a potential US Navy next generation weather code, NEPTUNE. The
optimization strategies introduced in this work target Intel KNL and Haswell because the
operational version of NEPTUNE is intended to run on Intel micro-architectures instead of

GPUs.

3.2 Experimental Setup and Methodology
3.2.1 Strategies for OpenMP Parallelism
3.2.1.1 Task Granularity (High-Level Versus Low-Level OpenMP)
High-level parallelism refers to parallelizing large blocks of code at the parent level in
the function call stack, whereas low-level refers to parallelizing smalls blocks of codes at

the instruction level (i.e., loops and arithmetic operations). The high-level approach has
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the advantage of using few individual parallel section, and few modifications within these
sections. However, the high-level approach also requires the code blocks to be thread safe
and free of serial bottlenecks.

In contrast, the low-level approach has the advantage of permitting parallelism in
selectively parallelizable code punctuated by serial sections. If these serial bottlenecks are
not easily removed, or if their relative cost is low, this may be a valid approach. Low-level
approaches may also be appropriate for codes that require multiple different parallelization
approaches (i.e., static versus dynamic scheduling, tasking, etc.) within different logical
blocks or subroutines. Whether high-level or low-level parallelism is best depends on the
individual code in question. High-level OpenMP is typically more elegant, but requires
code that is sufficiently independent to be parallelizable at the parent level in the call stack.
A low-level approach requires adding more parallel directives, but allows the original code
structure to be used more or less as is. High-level and low-level approaches relate to task
granularity, i.e., at which level logic is parallelized within a call stack. The length and
the complexity of the logic within each task may have an impact on scheduling and load

balancing, as well as on intertask dependency.

3.2.1.2 Data Granularity, Chunks, and SOA

In the physics schemes in NEPTUNE, data granularity refers to the size of arrays or
subarrays that are processed by each thread. Coarse-grain data parallelism corresponds
to dividing up the input data into the number of worker threads, and fine-grain data
parallelism corresponds to further subdividing input data into smaller chunks. The chunk
size determines the size of the subdivided data, as shown in Fig. For instance, an
2D input array (im x jm) is divided into multiple 2D subarrays of sizes chunksize x jm.
Typically input and output data are organized in arrays of structures (AOS) and regular
arrays. AOS is a layout where each array element is a structure with fields inside the
structure. The SOA data layout is more suitable for vectorization compared to the AOS data
layout. WSM6, GFS physics, and GFS radiation use large regular arrays and SOA. These
input and output data are transformed into thread-local SOA. A thread-local SOA is an
SOA that is private to a particular thread. The beneficial chunk size of the thread-local SOA
is determined by the SIMD unit length (8 or 16 in the case of KNL and Haswell), or by the
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number of cores per block (SM) in a GPU. A more in-depth study of SOA and other data
structures can be found in [43], [107]], [42]

In choosing the appropriate chunk size for an optimum data granularity, the goal
is to keep the data as local as possible to each thread. Ideally, within the L1 and L2
caches, it is advantageous to use thread-local data structures and copy to and from global
shared-memory arrays as necessary. The thread-local data are most effective when aligned
to SIMD/ chunk size and organized in SOA fashion. This data transformation allows the
data for each thread to be packed closely in memory, thus reducing cache misses, and
requests from L3/MCDRAM (on KNL) and/or main memory.

The input and output data structures in WSM6 and GFS codes are not suitable for
performance optimization because both SOA and regular arrays are large and do not fit into
cache. In addition, the SOA are dynamically allocated, which requires expensive memory
operations. Using thread-local SOA instead of large regular arrays and statically instead
of dynamically allocated arrays enables better memory usage and vectorization. Fig.
shows examples of the data transformation. Arrays A and B represent original input and
output data. The top halves of A and B are copied into a thread-local SOA that is private to
the thread to which it will be assigned. The same transformation is done for the bottom
halves of A and B. When the original input is a large SOA composed of A and B, the
transformation would be similar, from large shared memory SOA to thread-local SOA. This
thread-local SOA ensures that data required for a calculation are close together in memory,

and hence fit into the cache together. Overall, this modification enables memory locality.

3.2.1.3 GFS Physics Code Modifications

Although GFS physics and GFS radiation have similarities with WSM6, additional code
transformations were applied to GSF code to achieve reasonable speed-ups. Thread-local
SOA, transformation from dynamic to static allocation, and low-level transformation/vec-
torization, described below, are the key changes implemented in GFS physics and GFS

radiation to enable better performance and are now described in turn.

e Data reorganization with thread-local SOA: A thread-local SOA transformation is
applied to the input and output arrays as described in Fig. This transformation

makes it possible to construct a thread-local SOA that is local to the thread to which it
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Thread-local SOA 1
A

Thread-local SOA 2

Fig. 3.1: Transformation from AOS to SOA. The 2D arrays A and B are transformed into
two thread-local SOA. The top and bottom parts are put next to each other as shown on
the right. The chunk size shown in blue determines how to split and A and B. If the chunk
size is chosen to be two, A and B would be split into four parts, which would give four
thread-local SOA.

is assigned and small enough to fit in cache. This transformation requires copying the
original input and output data into the new thread-local SOA before passing it to the
GFS driver function calls. In the work by Ouermi et al. [81], the data reorganization
transformed regular arrays to thread-local SOA. Here, the data converted from large

SOA and regular arrays to thread-local SOA.

e Dynamic to static allocation: With static allocation, the arrays sizes are known at
compile time whereas in the dynamic case the arrays sizes are not known a priori.
The original GFS code employs dynamic allocation for the input and output arrays in
the GFS driver, which does not guarantee contiguous data. However, each array in
the SOA will be contiguously allocated, but the different allocations may be far apart
in memory. Thus, accessing dynamically allocated arrays is often more expensive
than accessing statically allocated arrays. Instead of using the original data or SOA
that are dynamically allocated, the original inputs and outputs are copied to statically

allocated thread-local SOA and then passed to the function calls in the GFS driver.

e Vectorization and low-level code transformations: The GFS physics and GFS radiation

do not have many serial bottlenecks that require major code transformation at a
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low-level as in WSM6 with niflv_rain_plm6 and niflv_rain_plm. Auto-vectorization
often fails to vectorize large body loops, or relatively complex code. Given that there
are not many serial bottlenecks, the OpenMP directive OMP SIMD is used at the lower
level in the physics parameterization codes to improve vectorization. This directive
is applied to the innermost loop, the i-loop, which has no dependencies. In the case
of WMS6, as shown by Ouermi et al. [81], major code transformation was required in

some cases to enable better vectorization.

3.2.2 Experimental Setup

The methodology used here follows Ouermi et al. [79], [81] to investigate various opti-
mization strategies. This methodology consists of constructing standalone experiments to
study the different approaches for parallelism in a more flexible and controlled environment.
The findings from the standalone experiments inform the optimization decisions in the
modules of interest, such as WSM6, GFS physics, and GFS radiation.

The experiments presented in this chapter use the Intel Knights Landing (KNL) [50]
and Xeon CPU E-7-8890 (Haswell). As a reminder, the Intel Knights Landing (KINL) [50]
architecture consists of 36 tiles interconnected with a 2D mesh, MCDRAM of 16GB high
bandwidth memory on one socket. The KNL architecture has a clock frequency of 1.3 GHz,
which is lower than the 2.5 GHz of Haswell. The Knights Landing tile is the basic unit
that is replicated across the entire chip. This tile consists of two cores, each connected
to two vector processing units (VPUs). Both cores share a 1 MB L2 cache. Two AVX-512
vector units process eight double-precision lanes each; a single core can execute two 512-bit
vector multiply-add instructions per clock cycle. The Intel Xeon CPU E-7-8890 (Haswell) is
composed of four sockets and four Non Uniform Memory Access (NUMA) nodes. Each

node is made of 18 cores with 2 threads per core and clock frequency of 2.5 Ghz frequency.

3.3 Standalone Experiments
3.3.1 Synthetic Codes
These experiments analyze the thread-local SOA performance with different array
sizes and dimensions in order to find a suitable structure for the physics schemes. The
thread-local SOA in Code 1 use 1D arrays whereas those in Code 2 use 2D arrays. In Code 1,

the k-loop is vectorized whereas in Code 2 the vectorization is along the i-loop. The access
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pattern is more involved in Code 1 compared to Code 2 because of the 1D versus 2D data
layout. The performance results from the data transpose approach, as shown in Fig. and
the GFS and WSMB6 codes take 2D (im x jm) and 3D (im x jm x km) arrays where im > 800
and jm < 40. For a long rectangular data matrix (im x km) as shown in Fig. thread
parallelism across the k loop is limited by the number of iterations, i.e., km. In this case, kmn <
40, which corresponds to less than 40 threads of the 256 threads on KNL. Transposing the
data matrix from im x km to km x im allows for better thread parallelism while maintaining
a good memory access pattern, as illustrated in Fig. This transformation does not
have an impact on computation correctness because both the standalone experiment codes

and target physics codes have no dependencies along the horizontal direction (i-loop).

Code 2

I$OMP PARALLEL DEFAULT(shared)
I$OMP PRIVATE((its ,ite ,ice,

Code 1 tsoa,thread_id,c)
1$OMP DO
I$OMP PARALLEL DEFAULT(shared) do c=1,ite
I$OMP PRIVATE(its ,ite ,ice, its = 1+ (c-1)*CHUNK
tsoa,thread_id,c) ite = min(its+CHUNK-1, ie)
1$OMP DO ice = ite-its+1
do c=1,ite do j=1,je
do j=1,je tsoa%a(l:ice,j) = a(its:ite,j)
tsoa%a(j) = a(c,j) tsoa%b(l:ice,j) = b(its:ite,j)
tsoa%b(j) = b(c,j) tsoa%d(l:ice,j) = d(its:tte,j)
tsoa%d(j) = d(c,j) tsoaje(l:ice,j) = e(its:ite,j)
tsoa%e(j) = e(c,j) enddo
enddo call work(tsoa%a,tsoa%b,
call work(tsoa%a,tsoa%b, tsoa%d,tsoale,1l,ice)
tsoald,tsoa%e,1l,ice) do j=1,je
do j=1,je a(its:ite,j) = tsoa%a(l:ice,j)
a(c,j) = tsoaka(j) b(its:ite,j) = tsoa%b(l:ice,j)
b(c,j) = tsoakb(j) d(its:ite,j) = tsoa%d(l:ice,j)
d(c,j) = tsoa%kd(j) e(its:ite,j) = tsoale(l:ice,j)
e(c,j) = tsoake(j) enddo
enddo enddo
enddo I1$OMP END DO
1$OMP END DO I1$OMP END PARALLEL
1$SOMP END PARALLEL
subroutine work(a, b, c, d)
subroutine work(a, b, c, d) imlicit none
imlicit none real , intent(inout):: a(:,:),b
real ,intent (inout):: a(:),b(:) [CED
real ,intent (inout) :: c(:),d(:) real , intent(inout):: c(:,:),d
integer:: j (:,:)
1$OMP SIMD integer , intent(in):: is,ie
do j=2,je-1 integer:: i,j
a(j) = 0.1+c(jd)/d(j) do j=2,je-1
b(j) = (0.2+c(j-1)-c(j)) $OMP SIMD
/(c(j)-c(j-1)+0.5) do i=is,ie
enddo a(i,j) = 0.1+c(i,j)/d(i,j)
end subroutine work b(i,j) = (0.2+c(i,j-1)-c(i,3j))
/(c(i,j)-c(i,j-1)+0.5)
enddo
enddo

end subroutine work
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Fig. 3.2: Transpose representation that shows transposition of a 2D (im x jm) array, where
im > 800 and jm < 40. Given that Fortran is column major, k is the outer loop before the
transposition, shown on the left. The outer loop becomes i after the transposition as shown
on the right. This transformation increases thread parallelism on the outer loop.

Fig. shows a code example of the transposition. Following the column major
ordering in Fortran, the i-loop becomes the outer loop with im = 10586 after transformation.
Furthermore, there are no dependencies along the i index, which allows parallelism in index
i to be exploited. Table3.1|shows performance results from SOA with 1D arrays, transposed
data matrices, and unmodified original data. The SOA approach yields significant speed-
ups with a maximum of about 34. The data transpose approach performs the best in this
particular experiment, with a maximum speed-up of about 41. The length of the arrays in

the SOA is 48. This small array length translates to a small amount of work for the innermost

ISOMP DO ISOMP DO
for k=1, km for i=1,im
fori=1,im for k=1, km
dza(i,k) = zi(i,k) - za(i,k) dza(k,i) = zi(k,i) - za(k,i)
enddo . enddo
Enddo Enddo
ISOMP END DO ISOMP END DO

Fig. 3.3: Code transformation with transpose. This shows how the transposition is
implemented with a simple code. The loops and the indices are swapped.
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loop in Code 1. In this experiment, the peak performance is observed at 128 threads with
two threads per cores. In hyper-threading, each core resources are shared between the
hyper-threads. The instructions from hyper-threads flow through the same pipeline, which
can help improve core utilization as observed in Table However, sharing resources
between hyper-threads may lead to performance decrease, as observed with 256 threads.
In addition, after 128 threads the work is not enough to enable further improvement in
speed-up.

Table shows performance results similar to those in Table 3.1| with an increased
problem size given by ke = 768. The arrays in the SOA are 16 times larger that those used in
previous experiments. In both cases, these results indicate that the transpose approach for
data organization yields better results. After 64 threads, each core uses hyper-threading,
with two to four threads per core, which a given core, divides the resources between the
hyper-threads causing the performance to decrease.

Table shows the performance results from using thread-local SOA with 2D arrays,
transposed data matrices, and unmodified original data. In this experiment, the OpenMP
chunk size is set to 8. In contrast to the previous experiments, these results show that
the thread-local SOA approach yields higher speed-ups than the other methods for data
organization. The maximum speed-up observed is 103 at 32 cores. After 32 threads, there is
not enough work per thread to enable performance scalability.

The results from Table [3.1]-[B.3|indicate that the size and structure of the arrays in the
thread-local SOA play an important role in the performance. Vectorizing along the k-loop,
in the 1D case, has a more involved access pattern than vectorizing along the i-loop, in the
2D case. In addition, there are no dependencies along the i-loop, which allows for trivial
vectorization. Furthermore, the L2 cache is about 16 times the size of the input data in
each SOA. Thus the thread-local SOA fit in the L2 cache, which allows for fast memory
access. When the thread-local SOA does not fit in the L2 cache, as shown in Table the
speed-ups are significantly lower than the ones observed in Table In Table 3.4} the peak
performance for thread-local SOA is observed at about 16 threads. This is lower than the

previous cases because of the high rate of cache misses.
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Table 3.1: Results from Code 1 compared to transpose approach and original code. The
maximum speed-ups for transpose and thread-local SOA are at 128 threads. At 128 threads,
each core uses two hyper-threads per core. The hyper-threads share the same instruction
pipeline, which helps improve utilization of cores. Sharing resources can contribute to
reducing core utilization, as observed at 256 threads. Hyper-threading performance is
dependent on how the shared resources are managed between hyper-threads.

Threads Time (ms) Speed-up

Orig. | Transp. | SOA || Orig. | Transp. | SOA

1 2.06 336 3.33 1 0.61 0.62
2 1.59 1.97 1.74 1.30 1.05 1.18
4 0.91 1.44 0.84 2.26 1.43 2.45
8 0.67 0.5 0.41 3.07 412 5.02
16 0.55 0.26 0.18 3.75 7.92 11.44
32 0.54 0.17 0.15 3.81 1212 | 13.73
64 0.72 0.05 0.11 2.86 41.20 | 18.73
128 0.87 0.05 0.06 2.37 41.20 | 34.33
256 1.35 0.1 0.49 1.53 20.60 4.20

Table 3.2: Results from Code 1 compared to transpose approach and original code with
large array sizes. In this experiment, the maximum performance occurs at 64 threads. After
64 threads, hyper-threading is used and the resource per core is divide up between the
hyper-threads. This causes the performance to slow down.

Threads Time (ms) Speed-up

Orig. | Transp. | SOA || Orig. | Transp. | SOA

1 33.82 | 29.53 | 7545 | 1.00 1.15 0.45
2 2698 | 19.44 45.7 1.25 1.74 0.74
4 1554 | 1347 | 2337 || 2.18 2.51 1.45
8 10.9 5.09 7.44 3.10 6.64 4.55
16 8.86 2.98 5.96 3.82 11.35 5.67
32 8.93 2.61 1.72 3.79 1296 | 19.66

64 10.97 0.95 1.39 3.08 35.60 | 24.33
128 16.14 1.17 5.93 2.10 2891 5.70
256 22.27 2.17 9.57 1.52 15.59 3.53

Table 3.4: Results from Code 2 compared to transpose approach and original code with
large arrays. The peak performance is observed at 16 threads. In this case, the array
thread-local SOA do not fit in L2 cache. This leads to lower performance than the cases
where the thread-local SOA fit in cache.

Threads Time (ms) Speed-up

Orig. | Transp. | SOA || Orig. | Transp. | SOA

1 264.71 | 194.94 | 159.98 || 1.00 1.36 1.65

2 119.93 | 120.69 | 113.15 || 2.21 2.19 2.34

4 98.89 61.57 57.08 2.68 4.30 4.64

8 54.17 2557 34.25 4.89 10.35 7.73

16 30.11 16.3 22.83 8.79 16.24 | 11.59
32 16.87 13.51 34.23 || 15.69 | 19.59 7.73
64 13.81 13.15 29.72 || 19.17 | 20.13 8.91
128 15.74 6.56 38.25 || 16.82 | 40.35 6.92
256 23.33 13.24 4551 || 11.35 | 19.99 5.82
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Table 3.3: Results from Code 2 compared to transpose approach and original code. The
best performance is observed at 64 threads for the thread-local SOA. At 128 and 256 threads,
each core uses about two and four threads per core. The core resources, such as L1 cache,
are shared between the hyper-threads, which causes the performance to slow down for
large core counts.

Threads Time (ms) Speed-up

Orig. | Transp. | SOA || Orig. | Transp. | SOA

1 2.06 3.36 1.99 || 1.00 0.61 1.04

2 1.59 1.97 1.07 || 1.30 1.05 1.93

4 0.91 1.44 0.53 || 2.26 1.43 3.89
8 0.67 0.5 0.14 || 3.07 412 14.71
16 0.55 0.26 0.07 || 3.75 7.92 29.43
32 0.54 0.17 0.02 || 3.81 | 12.12 | 103.00
64 0.72 0.05 0.06 || 2.86 | 41.20 | 34.33

128 0.87 0.05 0.27 || 237 | 41.20 7.63
256 1.35 0.1 0.04 || 1.53 | 20.60 | 51.50

Fig. shows the performance results from choosing different lengths for the index
i. All the chunk sizes considered yield higher speed-ups than using transpose approach.
The best performance is observed when using a chunk size of 32. The chunk size of 32

provides enough work to make better use of the SIMD units. The choice of the chunk size is

application dependent.

BICHUNK=8
BICHUNK=16
BICHUNK=32
[CICHUNK=64
[JCHUNK=128 T|

1 2 4 8 16 32 64 128 256
number of threads
Fig. 3.4: Plots of thread-local SOA performance wieh different chunk sizes. The bars indicate

the runtime of the optimized standalone Code 2 with different size thread-local SOA which
determined by the choice of chunk. The lowest runtime occurs at 64 with chunk = 32. This
indicates that chunk = 32 provide enough work per thread and one thread per core enables
a better usage of core resources compare to two and four threads per core.
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3.3.2 Rain Routines

The WSM6 module contains semi-Lagrangian routines [52], nisflv_rain_plmé6, and
nisflv_rain_plmé6 for simulating falling hydrometeors. These semi-Lagrangian routines, an
alternative to a traditional Eulerian scheme, use forward advection to calculate the path of
the falling hydrometeors. Initially, nisflv_rain_plm6, and nisflv_rain_plm6 used Fortran
keywords cycle, goto, and exit. With these keywords, the termination criteria are not
known a priori, which prevents parallelism. This limitation was resolved by substituting
the keywords with carefully engineered logic that performs the same computation. The
exits were replaced by masking, the gotos by loops coupled with conditionals and cycle by
conditionals. After removing these serial bottlenecks, the thread-local SOA and transpose
approaches from Code 2 are applied to the rain routines. As in Code 2, the rain routines
have no dependencies along the i-loop, and the thread-local SOA with a chunk size of 32
now fits into the L2 cache. The results in Fig. [3.5|and Table [3.5|for the optimized rain routine
with chunk = 32 demonstrate that using thread-local SOA produces larger speed-ups than
transposing the input data. In this case, the thread-local SOA are chosen to fit in cache and
designed for contiguous memory access to improve performance. In contrast, transposing
the input data increases parallelism at the thread level but does not improve memory
performance. The optimized, thread-local SOA, version of the rain routine runs 50 times

faster than the original serial version, and two faster than the transpose version.

50 \

—transpose
—soa

40
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0 1 1 1 1 1
0 50 100 150 200 250 300

number of threads

Fig. 3.5: Transpose vs SOA speed-ups on nisflv_rain_plmé. This thread scalability plot
reaffirms that using thread-local SOA scales better than transposing the input data.
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Table 3.5: Thread-local SOA and Transpose approach applied to nisfl_rain_plmé6. This

shows runtimes of transpose and thread-local SOA on a subroutine in WSM6.
Threads | Transpose (ms) | SOA (ms)

1 250 450

2 127 220

4 74 112

8 37 60

16 24 31.2
32 20 16.3
64 19 10.1
128 17 8.9
256 18 12.3

3.4 Optimization Results with WSM6 and GFS-Physics
3.41 WSMe
In addition to the transformations in nisflv_rain_plmé and nisflv_rain_plmé routines,
the OMP SIMD directive is applied at the lower level to the innermost loops instead of
relying on the Intel compiler auto vectorization. Thread parallelism is implemented at the
parent level in the WSM6 module. The bar plots in Fig. 3.6/and [3.7|do not show significant
differences in runtime for various thread-local SOA sizes on KNL and Haswell. These
figures indicate that the different chunk sizes used in this experiment achieve about the
same performance improvement with the best speed-up of about 26 when using static

scheduling.

T
MCHUNK=8
ICHUNK=16
[CJCHUNK=32 |
[JCHUNK=64

1 2 4 8 16 32 64 128 256
number of threads

Fig. 3.6: WSM6 runtime with various thread-local SOA sizes and static scheduling on
KNL. The bars shows that the runtimes decreases exponentially as the number of threads
increases regardless of the chunk sizes. Each chunk provides enough work for thread and
vector parallelism. The lowest runtime occurs at 64 threads and plateaus after that.
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BCHUNK=8

BMICHUNK=16
[ [ICHUNK=32 ||
[ JCHUNK=64

1 2 4 8 16 32 64 72 144
number of threads

Fig. 3.7: WSM6 runtime with various SOA sizes and static scheduling on Haswell. The
bars show that the runtimes decrease exponentially as the number of thread increase up
to about 32 threads. The best runtime is observed at 64 threads with chunk = 32. The
performance plateaus after the 64 threads. This indicates that hyper-threading does not
improve performance in WSM6. In addition, after 64 threads the amount of work per thread
is not large enough to enable scalability.

Fig. 3.8|and 3.9/ compare static versus dynamic scheduling performance on KNL and
Haswell, respectively. In both systems, dynamic scheduling, performs better than static
scheduling. The dynamic scheduler helps load balance the work between the threads.
Because of the conditionals and complexity within physics routines, the work distributed
between the threads may be unbalanced, causing some threads to run longer than necessary.
With dynamic scheduling, an internal work queue is used to give a block of iterations to
each thread. When a thread finishes its current task, it retrieves the next ready block for
the top of the queue. This helps reduce the wait time observed in the static scheduling
case. In the case of KNL, the performance can be further improved by enabling the flat
configuration. In the flat configuration, the high band width memory (HBM) MCDRAM
is used as a physical address instead of cache. This flat configuration in WSM6 makes
better use of the HBM compare to cache configuration. Fig. compares flat versus cache
performance on KNL. The flat KNL configuration provides better performance than the
cache configuration by a factor of 1.6. Overall, the optimized version of WSM6 runs 70
times faster and 26 times faster on KNL and Haswell, respectively. Haswell performs better
than KNL by a factor of by a factor of 1.3. In addition, the optimized version of WSM6 on

KNL runs 23.3 faster than the optimized version presented in [79].
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Fig. 3.8: WSM6 speed-ups on KNL. This shows scalability plots of WSM6 with static and
dynamic scheduling. The chunk size is chosen to be 32 in this case. The performance scales
up to 64 threads and then decreases. Hyper-threading is used at 128 and 256 threads. In
hyper-threading, the core resources are divided between hyper-threads, and this may limit
the performance, as seen in this case.

0 1 1
0 50 100 150

number of threads

Fig. 3.9: WSM6 speed-ups with static and dynamic scheduling on Haswell. The best
performance occurs at 32 threads. After 16 threads, performance is limited by the
NUMA affect because OpenMP is not suitable for parallelism across NUMA nodes. The
performance could be improved by using MPL
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Fig. 3.10: WSM6 speed-ups on KNL with flat configuration. In this scalability plot of WSM6
with cache and flat configuration, dynamic scheduling is used for both and the chunk size
is set to 32. The maximum speed-up is observed at 64 threads in the case of the cache
configuration and 128 threads in the case flat configuration. In the case of the flat mode,
hyper-threading with two hyper-threads per core improved performance. Although the
resources per core are shared between hyper-threads, in this case the set instructions in the
shared instruction pipeline enable a better utilization of core resources.

Table 3.6: SOA approach applied to WSM6 with flat and cache modes.

Threads | cache (ms) | flat (ms)
1 1079.3 1084.32
2 570.51 574.92
4 325.86 32491
8 171.67 167.61
16 93.3 90.32
32 53.66 50.21
64 354 31.66
128 45.39 23.45
256 65.59 24.2

3.4.2 GFS Physics Results
GFS physics does not have many serial bottlenecks that require major code transforma-
tions as in the case of WSM6 with niflv_rain_plmé6 and niflv_rain_plm. Thread parallelism
is applied at a high level in the GFS driver using thread-local SOA. OMP SIMD directives
are instrumented at a lower level, the innermost loops, to enable better vectorization. In
addition, static allocation is used for the thread-local SOA instead of dynamic allocation as

in the original input data.
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Fig. and show runtime performance on KNL and Haswell, respectively, with
different chunk sizes. In the case of KNL, the runtime decreases exponentially, indicating
good scalability. As shown in Fig. the runtime decreases up to about 16 threads.
The first 16 threads are running in one NUMA node. After 16 threads, more NUMA
nodes are used. Shared memory parallelism is not suitable for parallelism across NUMA
nodes. This limitation is addressed by using four MPI ranks, one for each node. Fig.
indicates that coupling the four MPI ranks with shared memory parallelism led to
significant improvement on runtimes past the 16 threads.

Fig. compare static and dynamic scheduling scalability. In Fig. the
speed-up increases up to 16 threads and decreases rapidly after the 16 threads because of
difficulties shared memory parallelism across the NUMA nodes. In both Fig. and
static, scheduling performs better than dynamic scheduling. The work load between threads
is sufficiently balanced that using a dynamic scheduler does not yield any improvement. In
the case of KNL, the flat configuration improves the speed-up by a factor of 1.04 compared
to the cache configuration. The optimized version of GFS physics runs about 2.4 times faster
on Haswell compared to KNL, which corresponds to speed-ups of 27 and 18 on KNL and

Haswell, respectively, over the original serial versions.
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Fig. 3.11: GFS physics runtime with various thread-local SOA sizes on KNL. This plot
shows the runtimes of different thread-local SOA to help guide the choice of chunk size.
Static scheduling is used in this experiment. The maximum speed-up occurs at 128 threads
with chunk = 8. The maximum number of loop iterations is 108. Thus, using 256 threads is
largely more than necessary given there are only 108 loop iterations.
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Fig. 3.12: GFS physics runtime with various SOA sizes on Haswell. This plot shows
runtimes of different thread-local SOA to help determine the appropriate choice for the
chunk size. MPI was not used. OpenMP is used for shared parallelism across NUMA
nodes. The default static scheduler is used in this experiment. The lowest runtime occurs
a 16 threads. After 16 threads, the NUMA effect start limiting performance. This can be
addressed by using MPI for parallelism across NUMA nodes.

3.4.3 GFS radiation
As in GFS physics, GFS radiation is optimized at a high-level with thread-local SOA

to improve thread parallelism and at a low-level with OMP SIMD to improve utilization
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Fig. 3.13: GFS physics runtime with various SOA sizes on Haswell with MPI. This plots
shows runtimes of different thread-local SOA to help choose on the appropriate chose
for the chunk size. MPI was used for parallelism across NUMA nodes and OpenMP
for shared parallelism within NUMA nodes. The default static scheduler is used in this
experiment. The performance scales up to 72 threads. Hyper-threading does not help
improve speed-ups.
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Fig. 3.14: GFS physics speed-ups on KNL. These plots show thread scalability performance
with static and dynamic scheduling on KNL. The performance scales up to 128 threads. The
uses a maximum of 128 threads because there is 108 iteration. Using 256 threads would be
oversubscribing. In this case, hyper-threading enables better performance.

of SIMD units. Static instead of dynamic allocation is used as well to improve memory
accesses. Similarly to WSM6 and GFS physics, the bar plots in Fig. - are used
to determine the appropriate thread-local SOA size to choose for optimization. Fig.
indicates the limitations of using OpenMP for parallelism across NUMA nodes. Fig.
and show that the chunk sizes of 8 and 16 yield the lowest runtime on both KNL and

Speed-ups
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Fig. 3.15: GFS physics speed-ups on Haswell. These plots show thread scalability perfor-
mance with static and dynamic scheduling on Haswell. OpenMP is used for parallelism
within and across NUMA nodes. The performance decreases after 16 threads because
of NUMA effects. Using OpenMP fr parallelism across NUMA nodes does not improve
speed-ups.
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Fig. 3.16: GFS physics speed-ups on Haswell with MPI across nodes. These plots show
thread scalability performance with static and dynamic scheduling on Haswell. MPI and
OpenMP are used for parallelism across and within NUMA nodes, respectively. This
optimization scales up to 72 cores. Hyper-threading does not improve the utilization of
core resources.

Haswell.

Fig. B.21)-.23|compare static and dynamic performance on KNL and Haswell. Similarly
to the previous case with GFS codes, not using MPI for parallelism across NUMA nodes
does not scale as shown in Fig. On both KNL and Haswell, dynamic scheduling
performs better than static scheduling. The use of dynamically assigned work loads to

threads reduces the threads wait time compared to statically distributing work between the
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Fig. 3.17: GFS physics speed-ups on KNL. These plots show thread scalability performance
with flat and cache configurations on KNL. Dynamic scheduling is used. Both cache and
flat configurations scale up to 128 threads.
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Fig. 3.18: GFS radiation runtimes with various SOA sizes on KNL. This plot shows runtimes
of different thread-local SOA to help determine the appropriate choice for the chunk
size. Static scheduling is used in this experiment. The best speed-up is observed at 64
threads. This indicates that one thread per core allows for better utilization of core resources
compared to two threads per core.

threads. Further performance improvement is observed when using the flat configuration
in the case of KNL by a factor of 1.05, as shown in Fig.
The optimized version of GFS physics runs 23 and 30 times faster on KNL and Haswell,

respectively, over the serial times on KNL and Haswell. The runtime on Haswell is 6.5
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Fig. 3.19: GFS radiation runtimes with various SOA sizes on Haswell. This plot shows
runtimes of different thread-local SOA to help determine the appropriate choice for the
chunk size. MPI was not used. OpenMP is used for shared parallelism across NUMA nodes.
The default static scheduler is used in this experiment. The best performance is observed
at 16 threads. After 16 threads, using OpenMP for parallelism across NUMA nodes limits
performance. OpenMP is designed for shared memory parallelism.
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Fig. 3.20: GFS radiation runtimes with various SOA sizes on Haswell. This plot shows

runtimes of different thread-local SOA to help determine the appropriate choice for
the chunk size. MPI was used for parallelism across NUMA nodes and OpenMP for
shared parallelism within NUMA nodes. The default static scheduler is used in this
experiment. This experiment scales up to 64 threads. Using hyper-threads does not improve
performance.

faster than the runtime on KNL.
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Fig. 3.21: GFS radiation speed-ups on KNL. These plots show thread scalability performance
with static and dynamic scheduling on KNL. The maximum performance is observed at
about 64 threads. The performance does not change much between 32 and 64 threads
because there is not enough work per thread to improve scalability. After 64 threads, the
performance decreases because the hyper-threading does not help increase performance.
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Fig. 3.22: GFS radiation speed-ups on Haswell. These plots show thread scalability
performance with static and dynamic scheduling on Haswell. OpenMP is used for
parallelism within and across NUMA nodes. The best performance is observed at 16
threads. After 16 threads, the performance decreases because OpenMP is not suitable for
parallelism across NUMA nodes.

3.5 Summary and Discussion
The results from the standalone experiments in Section 3.3| demonstrate that the thread-
local SOA approach is suitable for optimizing the physics schemes in NEPTUNE. These

standalone experiments are instrumental in identifying the modifications necessary to
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Fig. 3.23: GFS radiation speed-ups on Haswell with MPI across nodes. These plots show

thread scalability performance with static and dynamic scheduling on Haswell. MPI and
OpenMP are used for parallelism across and within NUMA nodes, respectively. This
optimized code scales up to 72 threads. After the 72 threads the performance decreases.
This indicates that one thread per core enables a better utilization of the core’s resources
than two threads per core.
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Fig. 3.24: GFS radiation speed-ups on KNL. These plots show thread scalability performance
with flat and cache configurations on KNL. Both flat and cache configurations scale up to 64
threads. The performance decreases after 64 threads because hyper-threads do not improve
utilization of core’s resources. Because the test case fit in MCDRAM, the flat configuration
enables a slightly better memory usage, which is translated into better performance.

optimize WSM6, GFS physics and GFS radiation on KNL and Haswell. This study exploits
the flexibility and simplicity of the standalone experiments to prototype and test the
different optimization strategies, which are not easily and trivially testable in NEPTUNE.

The transformation of the input and output data into thread-local SOA is the main
approach used in optimizing the WSM6 and GFS codes. The size of the thread-local SOA is
chosen to fit in the L2 cache. Each thread-local SOA is composed of the inputs and outputs
required to calculate the physics for a few columns. This data transformation reduces
memory traffic and increase data locality. In the transpose approach, the data might be far
apart in memory and too large to fit in the L2 cache. This causes cache misses, which limits
performance. In addition, applying the transpose to the entire physics routines requires
significant code modification compared to the thread-local SOA approach.

The OpenMP directive OMP SIMD is used to improve vector parallelism at the low level.
In cases similar to the rain routines, significant low-level code modifications are required to
enable vectorization. Given that there are dependencies along the vertical direction, the
OMP SIMD directive is applied along the horizontal direction (i loop). In the thread-local
SOA, the i-loop corresponding to the chunk size is chosen to be a multiple of the SIMD unit
length.

The original serial version of WSM6, GFS physics, and GFS physics ran for 1.65 sec, 0.130
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sec, 4.40 sec on KNL and 0.444 sec, 0.036 sec, and 0.870 sec on Haswell. These runtimes
are about 3.7, 3.6, and 5.05 times faster on Haswell compared to KNL for serial codes. The
original codes rely on auto vectorization, which does not work well with a complex and
large body of code. Haswell has lower runtimes because it has a higher clock frequency
and a turbo boost. Table 3.7|shows a summary of performance improvement from original
codes to optimized thread-local SOA on both KNL and Haswell.

The optimized version of WSM6 yields a speed-up of 70 and 26 on KNL and Haswell,
respectively, over the serial times. In the case of Haswell, the maximum performance is
observed at about 32 cores compared to 64 cores on KNL. Haswell performs better than KNL
because it has higher clock speed and transactional synchronization extensions (TSX-NI)
technology to improve threading.

The performance of WSM6 on Haswell could be improved by designing the code to
run with 4 MPI ranks for parallelism across NUMA nodes. On KNL it could be further
improved by better using the SIMD units.

The optimized version of GFS physics runs about 2.4 faster on Haswell compared to
KNL. GFS physics scales up to 72 cores on Haswell and 64 cores on KNL. The large SIMD
units on KNL are not sufficient to outperform Haswell, which has more cores and a higher
clock frequency than KNL. After optimization, GFS physics runs 27 and 18 times faster on
KNL and Haswell, respectively, over the serial times.

The optimized GFS radiation runs 23 times faster on KNL and 30 times faster on Haswell
with respect to their serial times. In this case, Haswell performs about 6.5 better than KNL.

As in the GFS physics optimization, the GFS radiation scales up to 64 cores on KNL and 72

Table 3.7: Performance summary. This table shows the best performance results for the
different physics codes used on KNL and Haswell. On KNL the chunk size is set to 8 and
on Haswell it is set 32.

physics schemes WSMeé6 GFS physics | GFS radiation
best time (ms) 23.0 4.8 190.0
speed-up 70 27 23
KNL threads 64 128 64
configuration || dynamic+flat | static+flat | dynamic+flat
best time (ms) 17.0 2.0 29.0
speed-up 26 18 30
Haswell threads 32 72 72
configuration dynamic static dynamic
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cores on Haswell.

The test cases used in this study have about 10K iterations for WSM6 and 800 iterations
for GFS codes. These test cases are not large enough to provide sufficient work to each
thread and scale well to 64 cores on KNL and 72 cores on Haswell.

With regard to peak performance, some of the challenges faced by physics codes are
illustrated by Code 2 in Section 5. In this case, there are only nine flops in the inner loop.
This is typical of some of the loops in WSM6. As a result, with array dimensions of 10592
and 39, there are only 3.7M flops. A loop time of 0.02ms gives a flop rate of 185 GFLOPs,
which is about 6.6% of peak and is not unexpected for loops that have low flop counts.

All the tables and plots show a performance decrease after 128 threads for KNL and
72 threads for Haswell. This corresponds to two or four thread per core. In the KNL and
Haswell, all active threads in a given core flow through the same pipeline, and thus they
share resources such as instruction cache and instruction queue. The increase in the number
of threads per cores leads to the division of the shared resources among threads, and to
an increase in memory access conflicts. This competition for resources indicates why a
performance decrease is observed after 128 threads and 72 threads on KNL and Haswell,
respectively.

This work has demonstrated the efficiency of high-level optimization approach using
thread-local SOA paired with low-level optimization technique using OMP SIMD directive.
As presented in the results section, these optimization approaches enable a better utilization
of the KNL and Haswell resources by improving locality, memory allocation, and vector-
ization. The use of thread-local SOA and static allocation enables better memory traffic by
increasing locality and decreasing cache misses. The use OMP SIMD directives coupled
with SOA chunk sizes, set to be multiples of the SIMD length, enables a better utilization of
SIMD units in KNL and Haswell. Overall, the various optimizations achieved a speed-ups
of 70, 27, 23 on KNL, and 26, 18, and 30 on Haswell over the original serial version of WSM6,
GFS physics, GFS Radiation, respectively. In addition, the results indicated that WSM6, GFS
physics, GFS radiation run 1.3, 2.4 and 6.5 faster on on Haswell compared to KNL because
the Haswell system used here has more cores and a higher clock frequency than KNL. As
mentioned in the discussion, peak performance is still relatively challenging to achieve

given the complexity of the physics schemes.



CHAPTER 4

HIGH-ORDER DATA-BOUNDED AND
POSITIVITY-PRESERVING INTERPOLATION

4.1 Introduction

A number of key scientific computing applications that are based upon high-order
methods over tensor-product grid constructions, such as numerical weather prediction
(NWP) and combustion simulations, require property-preserving interpolation. In the afore-
mentioned application areas, property preservation often manifests itself as a requirement
for either data boundedness or positivity preservation. The particular application moti-
vating this work is the Navy Environmental Prediction System Utilizing a Nonhydrostatic
Engine (NEPTUNE). NEPTUNE is a next-generation global NWP system being developed
at the Naval Research Laboratory (NRL) and the Naval Postgraduate School (NPS) [55].
NEPTUNE makes use of the Nonhydrostatic Unified Model of the Atmosphere (NUMA) [34]
three-dimensional spectral element dynamical core, but currently uses physics routines that
were developed assuming uniform grid spacing on the elements. At least two options are
available for combining these two NWP building blocks: either (1) evaluate the physics
routines at the (nonuniformly spaced) quadrature points on the spectral element with
acknowledgment that a modeling “crime" has been committed; or (2) interpolate between
the grid (quadrature points) on which the dynamics is calculated to a grid on which the
physics is calculated (and back), and hence incur an interpolation error. Since there is a
long-standing history of using the validated physics routines designed for use on uniformly
spaced grids, there is a strong incentive to apply the second option. However, interpolating
density or other key physical quantities without accounting for property preservation may
lead to negative values that are nonphysical and result in inaccurate representations and/or

interpretations of the physical data. For example, Skamrock et al. [98] demonstrated that
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not preserving positivity may lead to a positive bias in a predicted physical quantity of
interest (e.g., prediction of moisture). The second option mentioned above of moving
information from nonuniform to uniform and back via ENO-type interpolation schemes,
explored in [78] in the context of high-order methods for numerical weather prediction, is
the main motivation for this work.

Property-preserving interpolation is straightforward when used in the context of low-
order numerical simulation methods. High order property-preserving interpolation is,
however, nontrivial, especially when the interpolation points are not uniformly spaced.
In this chapter, we demonstrate that it is possible to adaptively construct high-order
interpolation methods over unevenly spaced tensor product grids in a way that ensures
either data boundedness or positivity preservation (within user-supplied bounds). The
algorithm we have developed comes with theoretical estimates, presented herein, that

provide sufficient conditions for data boundedness and positivity preservation.

4.1.1 Previous Work

In this section, we provide an overview of various numerical approaches to data
boundedness and positivity preservation. This overview is not meant to be exhaustive,
but instead to summarize the various ways by which researchers have attempted to tackle
this challenging problem. Introduced by Harten et al. [39], Essentially Non-Oscillatory
(ENO) schemes were developed to solve problems with sharp gradients and discontinuities
while achieving high-order accuracy in both smooth and nonsmooth regions. As with many
tinite-difference-based methods, the backbone of these schemes is interpolation methods.
In the context of this chapter, which is to propose ENO-like interpolation schemes that
are property preserving, we briefly review ENO methods. In the context of finite volume
schemes, Fjordholm et al. [29] demonstrated that ENO schemes are stable, in the sense that
the jump of the reconstructed value at each cell interface has the same sign as the jump in
the underlying cell average. Building on the work in [101] and [29], Fjordholm et al. [28]]
developed a high-order entropy stable ENO scheme for conservation laws. This approach
consists of using entropy conservative flux based on [101]], adding a numerical diffusion to
obtain a stable scheme, and obtaining the high-order accuracy via ENO reconstruction.

Harten [37], [38] developed an ENO scheme for subcell resolution in the cases where
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a discontinuity lies inside a given cell. Weighted Essentially Non-Oscillatory (WENO)
schemes were later proposed by Liu et al. [63]] to address some of the shortcomings of the
ENO schemes. Shu [95] provided a comprehensive overview of different applications and
problems in which ENO and WENO schemes are used. Shen et al. [92] proposed an adaptive
mesh refinement method (AMR) based on WENO schemes for hyperbolic conservation
laws. In this approach, high-order WENO interpolation is used for the prolongation. A
generalization of the AMR-WENO in [105] was used to solve a multidimension detonation
problem.

Another body of literature sometimes considered around property-preserving methods
is computer-aided design and visualization. Although different from the finite difference
(stencil) methods that we seek, we briefly review this literature. In this literature, “shape"
preservation is often used to describe the preservation of properties like monotonicity and
convexity, and may include positivity and data boundedness [15] and [13]. We only briefly
review this literature as the additional smoothness constraints at the stencil points enforced
by these methods introduce a level of complexity not needed for our application domain.
Our focus is finite difference ENO-type schemes. Perhaps the most widely used approach
for preserving monotonicity in many applications is PCHIP by Fritch and Carlson [33]], who
derived necessary and sufficient conditions for monotone cubic interpolation, and provided
an algorithm for building a piecewise cubic approximation from data. This algorithm
calculates the values of the first derivatives at the nodes based on the necessary and
sufficient conditions. Lux et al. [64] proposed a monotone quintic spline (MQS) algorithm
that relies on the results of Hef$ and Schmidt [90]] and Ulrich and Watson [104]. This method
is dependent on the value of the first and second derivatives at the node. The algorithm
uses the sufficient conditions from [90] to check for monotonicity. When the conditions are
not met, the method in [104] is used to modify the values of the first and second derivatives
to ensure monotonicity. The work of Dougherty et al. [21] extends these ideas to preserving
convexity and concavity and also to quintic splines.

A second area in which one often finds the development of methods for property preser-
vation is numerical methods for partial differential equations (PDEs). Various methods have
been developed to enable, for example, positivity-preserving approximations. To preserve

positivity in discontinuous Galerkin (dG) schemes, Zhang et al. [110], [113], [111] introduced
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a linear rescaling of polynomials that ensures that the evaluation of the polynomial at the
quadrature points remains positive. In addition, the linear rescaling of the polynomial
conserves mass. Light et al. [60] developed a similar approach with a more involved linear
polynomial rescaling that preserves positivity at the quadrature nodes and conserves mass.
The polynomial rescaling does not address the case of interpolating between different
meshes, which is the primary focus of this work. Harten et al. [39] developed an Essentially
Non-Oscillatory (ENO) piecewise polynomial reconstruction that enables interpolation
between different meshes. The ENO method adaptively chooses stencil points for the
interpolation and helps remove Gibbs-like effects but does not guarantee positivity. As
previously mentioned, extensions of these ideas to a Weighted ENO (WENO) combination
of these schemes have been proposed by Zhang et al. [112] and others. Finally, Zala et
al. [108], [109] developed a nonlinear filtering operator for property-preservation by casting
it as an optimization problem in which the desired “structures” (properties) are encoded as
constraints.

The data-bounded interpolation (DBI) method of Berzins [5] builds on three ideas
from these ENO and WENO algorithms in the area of the numerical solution of advection
equations: adaptively selecting stencils as in the ENO methods to reduce oscillations [39];
altering the polynomial approximation so that any discontinuities in higher derivatives
are removed [38]]; and altering the polynomial degree and/or terms so that the ratio of
successive divided differences in the series is strictly limited to enforce the boundedness
of the interpolation [5]. The work in [3] extends the earlier proof to 1D unevenly spaced
points where, in addition to the interval points, all the remaining points used to build the
interpolant are to the right or left of the interval of interest. In addition, the work in [3]]
recognizes that switching off data boundedness when extrema are present is important
for maintaining accuracy. Positivity is important in interpolation cases in which extrema
lie between data points and where the data-bounded interpolant will “clip" the function,
resulting in a loss of accuracy. A novel feature of the approach addresses the fact that
preserving positivity alone may still produce undesirable oscillations that lead to an
inaccurate representation and/or interpretation of the underlying data. These oscillations
are removed here by imposing strict user-supplied bounds on the positive interpolants as a

way of limiting oscillations and correspondingly improving accuracy.
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This work extends the ideas in [5] by addressing data boundedness and positivity (within
user-supplied bounds) in the same framework and by allowing meshes of unevenly spaced
points. The DBI method presented in this chapter introduces more relaxed conditions for
data-boundedness which give greater accuracy than the conditions used in [5]. Thus,
these new proofs provide the previously missing theoretical underpinning for complex
interpolation cases such as those like the NWP case described above. The new approach
used here both generalizes the DBI method to unevenly spaced structured meshes and
extends the approach to preserve positivity (positivity-preserving interpolation (PPI)) rather

than the more restrictive data-bounded approach in [5] and [3].

4.2 Background
The approach introduced in this work relies on the Newton polynomial [56,103]]
representation to build interpolants that are positive or bounded by the data values. The
ability to adaptively select the divided differences or the stencil as in ENO methods [39] is
central to the data-bounded and positivity-preserving interpolation approaches presented
in this work.

Consider a 1D mesh defined as follows:
M ={xi_j,-- X, X1, XiyL}, (4.1)

where x;_j < -+ < x; < Xjp1 < -+ < Xjpp,and {u;_j, - -+ ,u;} is the set of data values
associated with the mesh points. In the definition of the mesh M, the subscripts |, L,
i,€ No = NU{0}, and x4, uy € Rfori—] < k < i+ L. For the given mesh M, the

Newton divided differences are recursively defined as follows:

Ulxi] = u; .
U[xi, e /xi+j] _ U[Xi+1/"',xi;i]r;}i[ixi,'",xiﬂ;ﬂ . )

The ENO procedure starts by setting the initial stencil Vy:
Vo = {xi, i1} = {x0,x0}- (43)

The stencil V) is expanded by successively appending a point to the right or left of V; to
form V; 1. The point appended is selected by picking the smallest divided difference at

each step.
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Given V), let x§ and x; be the leftmost and rightmost stencil points, respectively. In
addition, let x, and x; be the stencil points immediately to the left and right of V;. The
stencil is expanded from V; to V1 based on the following rules:

o if |U[xp,x§,- x| < \U[x},-u /X7, ]| then

_ dhool L — —
Vis1 = {xp, Vj} withx; ; = xp and x| = x7.

e otherwise

— ; I —
Vien ={Vj, xg} withx; ; = x;and x]; = x,.

Let

Ii = [xi/xi+1]/ fOI' 0 S i S n—1. (44)

Once the final stencil V,_; is obtained, the interpolant of degree n defined on I; can be

written as

U (x) = w; + Ulxg, )70, (x) + UL, -+, )7, (2) + -+ Uy, 2 4] i(x),
(4.5)
where 7 ;(x) = (x — x;), m1i(x) = (x — x;)(x — x{), - - - are the Newton basis functions. x;
is the point added to expand the stencil V; 5 to V;_1 and can be explicitly expressed as
X5 = X,
xX§ = Xip1, (4.6)
x]e-:Vj_l\Vj_z, 2<j<n-1.
The first step in developing the DBI and PPI methods consists of reorganizing the terms
in the polynomial U, (x) defined in Equation to expose the features used to enforce

data boundedness and positivity. The reorganization begins by defining A; as follows:

1, j=0
A = Ul ] ) 4.7)
] I
m(x;—xj), 1<j<n-1
Expressing U, (x) in terms of A;, for j > 0 gives
I _ Al
Un(x) = ui + (U1 — u;) xr xol (1 MM
0~ %o (x] = x3) (4.8)
(x —x5) (x —x74) '
1+ —F | A2 | I —— 7 A ) )
(x5 = x3) (X1 = Xp_1)
For x € [, s, tj, and d; are defined as follows:
— V.
0<s— % _X7% 4 (4.9)

Xi+t1 — X; XS — X6
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Xj — X
tj=———, and (4.10)
XH— X
X — oyl
0<dj=-1—. (4.11)
Yo~ %o

x—x¢
L in terms of s, t;, and d;
xjr.ij ) ]

s and d; are defined such that s € [0,1] and d; > 0. Expressing

gives
X;—x¢
e X—X;i 4 j
i R e
r 1= X —xl = d. (412)
Xj = X; 1% i
Xo—Xg

Using the results from Equation (4.12), the polynomial U, (x) as expressed in Equation (4.8)
can be written as

U, (x) = u; + (i1 — u;)Sn(x) (4.13)

with S, (x) defined as
)= s(1+ U (14 O (ot ) ) g
For future use below, S,,(x) can be compactly represented by introducing J; defined as
op =1
®=1+%?M®H 2<j<n-—1 (4.15)
b= s+ 505 =5, ().
Together, U, (x) and S, (x) in Equations and are reorganizations needed to con-
struct the DBI and PPI algorithm. The general approach is to first bound the quadratic term
in S, (x) and then to increase the order to cubic, quartic, and higher order polynomials. This
iterative procedure is used to define computational bounds on the values of A; = H;(:O Ak

A; can be explicitly written as

T — A ! 1 j=0,
j = A . |
k=1 { E] T (xf—x), 1<j<n-—1

4.3 Data-Bounded Interpolation
The DBI method builds on three ideas from algorithms in the area of the numerical
solution of advection equations: adaptively selecting stencils as in the ENO methods to
reduce oscillations [39]; altering the polynomial approximation so that any discontinuities

in higher derivatives are removed [38]; and altering the polynomial degree and/or terms
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so that the ratio of successive divided differences in the series is strictly limited to enforce
the boundedness of the interpolation [5]. In the DBI method introduced here, more relaxed
bounds on Xj defined in Equation 1) are derived, which gives greater accuracy than
those in [5]. The work in [5] requires that the absolute values of }\j decrease as more
terms are added (|A;| > |Aj;1]) and |A;| < 1, which are more restrictive than the bounds in
Equation (4.27). For a given set of mesh points and the data values associated with those
mesh points, we approximate the data with a C® continuous function that is built by fitting
a polynomial in each subinterval I;. The fitted polynomial is constructed in such a way
that it is bounded by u; and ;1. Given that this work concerns itself with locally fitting
a polynomial in the interval I;, let us assume, for the remaining parts of this chapter, that
x € I; and that building the interpolant always starts with the stencil Vy = {x;, xi41}-

Let U!(x) be the limited polynomial defined as in Equation and bounded by u; and

uit1. For the polynomial u! (x) to be bounded by u; and u; 1, it follows that for x € I;
0<S,(x) <1, (4.17)

with S, (x) defined in Equation (6.7). The reconstruction procedure begins by considering
the linear and quadratic terms from S, (x) in Equation (6.7), and imposing the following
bounds:

s—1-
< 1. .
7 /\1) <1 (4.18)

As s € [0,1] and isolating A; in Equation (4.18) gives

0<s(1+

_ 4 d
s

<A < .
<A< Y and (4.19)

—d; < A < d. (4.20)

The bounds from Equation (4.20) are extended to bound the cubic form by requiring that
what multiplies A1 must fit into the inequality in Equation (4.20). Thus, for the cubic case

Equation (4.20) becomes

tz)

—di <A (1+ (S;}\z) < d. (4.21)
2
Subtracting A1 from this inequality gives
— (S — tz) — —
—d; — A < Ay <dyp — Aq. (4.22)
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In the case when t; is negative, s — t; has a maximum value at s = 1 and a minimum value

ats = 0. A is then bounded by

dy
(1—t2)

dp
(1—t2)

(—di — A1) <Ay < (d1 — Av)

(4.23)

When ¢, positive, %tz is substituted by %fz and the inequalities < with > and vice versa

are swapped. In the quartic case, we require that

& (—di— A1) <A1+ M% < i (dq — Aq). (4.24)
1-— to d3 1-— t
If we assume that ¢3 is negative
dz dp . . < ds dp < .
—dy —Aq) — <A < — A1) = Az ). :
1—t3<1—t2( di — Ay) /\2) <Az < 1—t3<1—t2(d1 A1) /\2> (4.25)

This reconstruction procedure can be continued to higher orders provided that care is taken
to correctly manage the impact of the signs of ¢;. For the boundary and nearby boundary
intervals, fewer choices are available, and the final stencil is biased toward the interior
of the domain because there are no points to choose from beyond the boundaries. In the
process of constructing V,,_1, when the left or right boundary are reached, the remaining
mesh points are obtained from the side that is toward the interior of the domain.

For a more formal and complete expression of this recursive procedure, the bounds on

Aj can be defined as follows:

—dq j=0
By =1 (B~ Aty b€ (=000 j>1 (4.26a)
(B, =A%, He(0,+0) j>1,
and
d, ji=1
B = (B, — x]»_l)l:ft]_, t € (—00,0] j>1 (4.26b)

(B]:1 — /_\j,l)_—;j, ti € (0,400) j>1
. . . . . .. — + . .
The sign of t; is incorporated into the definitions of B I and B ; in Equations 1) and
(4.26b)), respectively. The sufficient conditions for data boundedness such as Equations

(4.20), (4.23) and (4.25) can now be written as

B < A< B].*, forj > 0. (4.27)
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. — + . . .
Lemma 4.3.1. Let us assume that for x € 1;, B j and B;" are defined as in Equations (4.26b) and

, respectively. In addition, let &; be defined as in Equation Afforx € I;, B ;- is negative,
B].+ is positive, and B < Aibjp < B].J“, then

- 1 +
B, <A1 < Bf,.

Proof. The proof is split into two cases that take into consideration the different possible

values of ;, and in each case we consider the left and right side of the inequality separately.

Let us start with the left side of the inequality (i.e, B, ; < A;_14;). Noting that >

s—t

<

for s € [0,1], and using B]-_ < 0and B]-_ < }\jéj+1, we have

_ d; 1—¢;
_ ' i i p—
<Bj_1 - AJ_l)S — t]' _S — t]‘ ]
SB]-_ (4.28)
S/_\](S]-i-l
Isolating B ]:1 in Equation 1i and using Equations li and (6.11) lead to
_ - S — t]‘ -
Bj—l S)\j—l + T]/\](S]—H
- s —tj 4.29
<Ay (1 + dj’)\jfsjﬂ) (4.29)
:}\]_15]

Now, let us focus on the right side of the inequality (i.e., B].tl > /_\j_léj) Again,

observing that 1:—2 > 1fors € [0,1] and using Bj+ > 0 and Bj+ > Ajdj41 yields

- d; 1—¢;
(Bfy ~ A =B}

g+ (4.30)

>Aibj4.
Isolating B].tl in Equation 1i yields
- s—t;i_
]
Bjtl >Aj 1+ e Aidiv

- S — t]'
2)\j71 1+ T)\j(5j+1
]

:}\]’_15]'.

(4.31)
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(D t; € (0, +00)

Let us consider the left side of the inequality (i.e., B, < Aj—16}). Multiplying B;” by
s%t;']_ yields
d.

+ 3. R
(Bj—l /\J—l)s_tj S_th]- (4.32)

Given that B <0 and B < Ajdj41, and noting that %tt’] > 1fors € [0,1], the right
side of Equation (4.32) can be bounded by B;" to give

< d;
(B, — Aa) = | <B-

j —t i (4.33)
<Ajdjt1
Isolating B} ; in Equation (4.33) leads to
B >)L] 1 —|— d /\ 5]+1

>Ai 1<1+ vl Shy, 5]“) (4.34)
]

:}\]‘_15]'.

For the right side of the inequality (i.e. B, ; < Ai—167) > 1fors € [0,1], and

’st

using B;” <0 and B < Ajbj41 yields

(Bj__l B )_Lj_l)s ijtj :.'9_—1}]'1‘]‘]3;r
>B; (4.35)
>Ai0j41
Isolating B _,in Equatlon 5) yields
B <Aj- 4l d] /\(S
<Ajiq (1 + S;jtf)\j(sm) (4.36)

:}\]’_1(5]'.

The results from Equations (4.29), (.31), ¢.29), and (#.31) can be summarized as

- 3 +
ij1 S Ajad; < ij1
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Theorem 4.3.2. Assuming that for x € I;, the polynomial S, (x) of degree n is built starting from
the stencil Vo = {x;, x;11}, and then by successively appending mesh points from the left and/or
right of the interval I; to obtain the final stencil V,,_1. The construction of V,,_1 does not require the
points to be added in a symmetric fashion alternating from left to right. If for x € I;, B;" defined in
Equation is negative, B, defined in Equation is positive, and B, < A; < B} then
forx € I

0<Sn(x) <1

Proof. This proof builds on the results from Lemma and starts by using B;” < Aj < Bf

to bound A,,_; as follows:

B, <A,1<B . (4.37)
By Lemma Equation then leads to

Successively using the results from Lemma tobound A,_26,_1, Ap_3bn_2, -+, A162,
yields
BT < A1éy < By, (4.39)

where ¢; is defined in Equation (4.15). The results from Equation (4.39) may now be used to
derive the target bounds (i.e., 0 < Sy(x) < 1). Considering the left side of Equation (4.39)

(i.e., By < A18,), and noting that S((S;ll)) > 1, gives

(s—=1) , __(s—1)
s(s—l)d1 =B s(s—1)

<B; (4.40)
<A16;.
Isolating 4; from Equation (4.40) gives
1—5s)-
15548 : ) 316y = 61 = S(x). (4.41)
1

Considering the right side of Equation (4.39) (i.e. B > A;14,), and noting that S((S__Si) > 1,

gives
(=) 4 _p+_(=9)
s(s— 1)d1 _B;rs(s -1)
EBT (4.42)

>A16;.
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Isolating 1 from Equation (4.42) gives

s(1—5s)

0<
Ss+ =

)_\152 = 51 = Sn (x) (443)

The proof concludes by combining the results from Equations (4.41) and (4.43) to obtain

M6 =61 = Su(x) < 1. (4.44)

O

4.4 Constrained Positivity-Preserving Interpolation
In many cases, it is sufficient to preserve positivity through interpolation and not to
enforce the stricter requirement of data boundedness. As mentioned in the introduction,
the case of unknown extrema between data points is an important example. Let U”(x) be a
positive polynomial of degree n defined over the interval I; as in Equation (6.6). For x € I;,
the polynomial U” (x) is allowed to grow beyond u; and u; 1 but must remain positive. For

the polynomial to be positive, one requires that
ur(x) > 0. (4.45)

However, in practice, enforcing positivity alone may still result in large oscillations and
in extrema that degrade the approximation. We observe this behavior because enforcing
positivity alone does not restrict how much the polynomial is allowed to grow beyond the
data values. In addition to enforcing positivity, it is important to remove the undesirable

oscillations and extrema as much as possible. Let us define u,,;, and 1,4y as
Umin = min(ui/ ui+1) — Apin, (446)

and

Umax = max(ui/ ui+1) + Apmax, (4.47)

where A,,;,, and A4y are user-defined parameters used to bound the positive polynomial
UP(x). To allow the polynomial to grow beyond the data values but not produce extrema

that are too large, we bound U (x) as follows:

Upin < UP(x) = uj + (Ui — 1) Sn(x) < Upmay- (4.48)
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The interpolant U” (x) is now positive and bounded by u,,;, and u,,. Equation (6.12) is
equivalent to bounding S, (x) as follows:

my < Su(x) < my, (4.49)

where the factors m, and m, are expressed as

M w1 >y
my; = min (0, umm_ul> , and m, = max (1, umx_ul) (4.50)
Uipr — U Uipr — U
a Uiy < Uj
my = min <O, umx—ui>, and m, = max <1, umm_uz> (4.51)
Uiy — Ui Uiy — Ui

We note that if we set A, = 0 and A, = 0, we recover Equation (4.45).

The PPI method is constructed by relaxing the bounds imposed on A; as follows:

<—4(mr—1) —1)d1 < )_Ll < <—4mg+1>d1. (452)

Let us demonstrate how the PPI method is constructed in the case of a quadratic interpolant.

Starting from the DBI results in the Theorem it follows that

—1).
0§s+s<sd )3, <1. 4.53)
1
Relaxing the left and right bounds in Equation (4.53)) by m, and m,, respectively, leads to
my < s+ S(Sd_ D3, <m, (4.54)
1
Isolating A; from Equation l) leads to
my — s < my—s
—d1 < < —0dy. .
s(s—l)d1 shs s;(s—l)d1 (4.95)
Equation (4.55) can be reorganized to obtain
m, —1 1—s - my s
di <M < - d 4.
()< h= (G- 20

and then

>l

m—1 1 my 1
(o) <h= (5 5o )

Noting that S(Sl_l) < —4, % >1,and ﬁ < —1, we obtain

<—4(mr—1)—1>d1 <A < <—4m4+1>d1. (4.58)
Once the bounds on A and the quadratic interpolant are determined, the extension to cubic,

quartic, and higher order interpolants follows the same reconstruction procedure used
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in the DBI method and outlined from Equation to [#.25). As in the case of the DBI
method, fewer choices are available for V,,_; at the boundary and nearby boundary intervals
because there are no points to choose from beyond the boundaries. When a boundary is
reached during the process of constructing the stencil V,_1, the remaining mesh points
are picked from the side that is toward the interior of the domain. The final stencils at the
boundary and nearby the boundary intervals are biased toward the interior of the domain.

The recursive expression for the bounds on A; for the PPI method becomes
B- = (B —Aj)p, iftj € (—0,0] j>1 (4.59a)

and

B]-+ = (B].t1 /'\j,l)li—ftj, if tj € (—o0,0] j>1 (4.59b)

(B, — Rj_l)ji;]_, if tj € (0,400) j>1.
The difference between the DBI and PPI methods is highlighted in how the bounds B;” and
B;" are calculated. More precisely, B; and B;" are defined as —d; and d; for the DBI method,
whereas for the PPI method, they are defined as (—4(m, — 1) — 1)d; and (—4m, + 1)d,
respectively. In addition, the DBI method can be recovered from the PPI methods by setting
my = 0 and m, = 1. For example, in the case of the right boundary Equations and
(4.58) can be written as

U[XN—2, XN—1, XN]
U[xN_1, XN]

—d; <Ay = (xn —xn-1) < dy, and (4.60)

- Ulxn_2,xXN-1,X
(—4(mr—1)—1>d1 <A = [&V[xjv fxiv] ] (xn — xn-1) < (—4mg—|—1>d1, (4.61)

where xy is the mesh point at the right boundary, m, <0, m, > 1, and

dy = SN " IN-2 (4.62)
XN — XN-1
From Equations (6.17) and (6.18), m, = 18.94 and m, = —18.94 for the right boundary of

the Runge example in Fig. [4.1|below. Equations (4.60) and (4.61) show the bounds on 1,

for data boundedness and positivity, respectively. Given that (—4(m, —1) —1) < 0 and
(—4my+1) > 1, the bounds for positivity are more relaxed than data boundedness. Thus,

enabling the use of higher degree polynomials for the PPI method than for the DBI method.
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Theorem 4.4.1. Let us assume that for x € I, the polynomials U, (x) and S, (x) of degree n are
defined as in Equations and (6.7), respectively. Both polynomials are built starting from the
stencil Vo = {x;, xj 11}, and then by successively appending mesh points from the left and/or right
of the interval I; to obtain the final stencil V,,_1. The construction of V,,_1 does not require the

points to be added in a symmetric fashion alternating from left to right. If for x € I;, B i defined in

. . . + . . . . g — 3 +
Equation is negative, B;" defined in Equation (4.26b) is positive, and B;' < A; < B then
forx € I

my < Sn(x) < m,
where my and m, are provided in Equations and .

Proof. As in Theorem the proof begins by using the results from Lemma and
the expression B < A < B;r tobound A, 28,1, Ay_30,—2, - - -, A162 and so to obtain the
result

B; < A16 < Bf. (4.63)

Equation (4.63) is then used to derive the target bounds. Starting with the left side of the

inequality (i.e.,, By < A1d7) and noting that ﬁ < —4 and —% < —1, yields
m, —s o my =1 1-—s
s(s — 1)d1 _<s(s - 1) + s(s— 1)>d1

== o)

(4.64)
§<—4(mr -1)— 1)d1
:Bf
<A16s.
Isolating m,, leads to the desired result
m>st 8TV 25 = Sp(x). (4.65)

1

Now, addressing the right side of the inequality (i.e. Bl+ > A162) and noting that . (511) <-4

and —i > 1, gives
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my —S

= ()
(5 o)

(4.66)
> ( —4my + 1> dq
= B;r
>A10s.
Isolating m, leads to the desired bound
~1).
my < s+ S(Sd ) Xa6r = 61 = (). (4.67)
1
The proof is concluded by combining Equations (4.65) and (4.67) to obtain
~1).
mp<s+ 8 =V5 5 =6 = su(x) < my. (4.68)
1
O

At the boundary intervals, both the DBI and PPI methods construct the interpolants
using a left- or right-biased stencil. For the left boundary, the final stencil is built by
successively appending mesh points from the right side of the interval I;. In the same
way, the final stencil for the right boundary interval is obtained by successively appending
the mesh points from the left side. For the nearby boundary intervals, the stencil points
selection process could reach the boundary before completing the final stencil. In such a
case, the remaining points are selected from the right if the left boundary is reached and

from the left is the right boundary is reached.

4.4.1 Hidden Local Extrema
The interval [; may contain a hidden extremum when two of three divided differences
U[xi-1,xi], U[xit1, %] and U[x; 41, x;42] of the neighboring intervals are of opposite signs.
In this case, the PCHIP and DBI algorithms truncate the extremum whereas the relaxed
nature of the PPI algorithm allows for a better approximation of the extremum. In [3],
when an extremum is detected, the ENO approach is used to construct the interpolant. The
ENO approach may fail to recover the extremum or result in oscillations that violate the

requirements for positivity and reduce the accuracy. The data-bounded method in [3]] is
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much more restrictive and does not address positivity. These limitations can be addressed
by using a bounded positive interpolant.

To simplify the notation, let us define 0;_1, 0; and ;4 such that
oi—1 = U[xj_1,xi], 0; = U[xi41, %], and 0j41 = U[xi41, Xiyo]. (4.69)

Asin [3] and [91]], we assume that there exists an extremum in I; if
0i_10i41 <0, or ;_10; < 0. (4.70)

To address the cases with and without extremum, we choose the parameters A,,;, and Ay
according to
lexmin (u;, u;41)| if 0;_10741 < Oand 0;_1 <0

Apin = Or 0;,_10;41 > 0 and gi_10; <0 (4.71)
eo|min(uj, uiy1)| otherwise,

and
e1|max(uj, uit1)| if 0i_10i41 <Oand o1 >0
Apax = or ;1041 > 0 and 0i_10; <0 (4.72)
eo|max(uj, ui11)| otherwise.

The positive parameters €y and €; are introduced to adjust A,;;, and A, when no extremum
is detected. In Equation , the interval [; has a local maximum if 0;_10;,17 < 0 and
0i-1 < 0. Correspondingly, in Equation (6.15), the interval I; has a local minimum if
0i—10i41 < 0 and 0;_1 > 0. In both Equations and the type of extremum is
ambiguous if 0;_10;;+1, and 0;_10; < 0. When an extremum is identified, A, and/or
Apax are chosen to be sufficiently large to allow the interpolant U”(x) to grow beyond
the data as needed to approximate the extremum without violating the requirement for
positivity. In the case where no extremum is identified, the parameter ¢ is used to adjust
Apin and/or A,y to be sufficiently large to allow higher degree interpolants compared to
the DBI method, but sufficiently small to not allow for large oscillations that will degradate
the accuracy of the approximation.

In Fig. we approximate the Runge function with N = 17 LGL points and different
values of €y, and the target polynomial degree is set to d = 16 for each interval. For
€p > 0.01, the PPI method leads to oscillations, whereas for ¢y < 0.01 the oscillations are

removed. Similar oscillations are seen when using high-order Chebyshev polynomials. The
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Fig. 4.1: The top row shows an approximation of f;(x) from N = 17 LGL points using DBI
and PPI with different values of €. The bottom row shows an approximation of f,(x) from
N = 17 uniformly spaced points using DBI and PPI with different values of €y. The values
of €7 is set to 1.0. The target polynomial degree is set to d = 16 for both f;(x) and f»(x).

cutoff for the positive parameter €y depends on the underlying function and the input data.
For the Runge example with N = 17 uniformly spaced points, the spurious oscillations
are removed for g < 0.05. With the same Runge example with N = 129 and d = 16,
the unconstrained approximation does not produce oscillations and €y can be set to any
value in [0,1]. In the case of the smoothed Heaviside examples, setting €y = 0.05 with
N = 17 uniformly spaced points lead to large oscillations that degrade the approximations.
However, for ¢g < 0.01 with N = 17, the oscillations are significantly reduced, and the
approximation improved, as shown in the bottom part of Fig. Setting €9 = 0.0 will
completely eliminate the oscillations. Overall, using €g < 0.01 is sufficient to remove or
significantly reduce the oscillations and improve the approximation. For an interval I; with

no extremum, as €y approaches zero and both A,,;, and A, get smaller, the approximation
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method becomes closer to the DBI approach. As for the DBI approach, the PPI method may
become restrictive for higher degree polynomial interpolants as €y approaches zero. This
approach is also further explored for a variety of practical applications [78].

The right part of Fig. 4.1|shows the interpolants used at the right boundaries in both the
Runge and smoothed Heaviside examples. At the right boundary of the Runge example,
the stencil {xy_12---xn} is used to build the data-bounded interpolant and the stencil
{x¥N-16, "+ , XN} is used for the positive interpolant with €y = 1. As the positive parameter
€o gets smaller the upper and lower bounds for the interpolant gets tighter and converges
to the DBI bounds. The stencil used for both the DBI and PPI are the same for ¢y < 0.01. At
the boundary intervals, the PPI method allows for higher degree interpolants compared to
the DBI method. However, these higher degree interpolants while positive may introduce
oscillations that can be removed using the parameter €y. For u; = u; 1, my, m, and U, (x) as
written in Equations (6.17), and are not defined. The PPI algorithm addresses

this limitation by rewriting U, (x) as
Un (%) = ui + Ulxq, - -, 2] (i1 — x0) (] — %7)Su (%), (4.73)
where S, (x) is expressed as follows:

Su(x) =Y _5;. (4.74)

The summation starts at j = 1 because the linear term % (x —x;) =0. Let

w= U[xll, s xq ) (xgr — xg) (] — ! ). (4.75)

/\j in this context is defined as

(g — ). (4.76)
For u; = u;1, the parameters m, and m, are then defined according to
M U, -, x>0

my = min <O, ummw_ul>, and m, = max(l, W) (4.77)

a : Ux, -+, %] <0

My = min <0, umuxw_ul>, and m, = max <1, ummw_ul> (4.78)



76

For U[x;, x;i+1) = U[x},- -+, x%] = 0, the data u;_1, u;, i1, and ;5 have the same value
(ui—1 = u; = ujy1 = uiy2). In this case, the algorithm approximates the function in the
interval I; with a linear interpolant. For both cases U[xll, -+, xt] < 0and U[xll, <Xt >0,
B and B;” remain defined as previously in Equations q6.19bp and q6.19a[). Lemma and

J
Theorem still hold and remain unchanged.

Fig. shows an example with u#; = #;;1 and a hidden local extremum at x = 0. In
Fig. we approximate the Runge function f;(x) using the PCHIP, DBI, and PPI methods
from 16 uniformly spaced data points. The PPI method is able to better capture the peak
compared to the DBI and PCHIP methods.

4.4.2 Algorithm

The ENO reconstruction can result in a stencil that is biased to the left or right. Rogerson
et al. [85] demonstrated that a biased ENO stencil may lead to some stability issues when
used to solve hyperbolic equations, and a refined resolution may lead to even larger errors.
To address this limitation, Shu [93] developed a modified ENO reconstruction that uses a
bias coefficient to target a preferred final stencil. Furthermore, a left- and right-biased stencil
may fail to recover hidden local extrema. For instance, if U[x;_1, x;] > 0, U[x;, x;41] < 0,
and U|x;11, xi+2] > 0, the interval I; has an extremum. In such a case, if the points in the
final stencil are all to the right or left of x;, the interpolant may fail to recover the extremum.

The points x;_; and x;;, are important for identifying and reconstructing a hidden local

1 ‘ ‘
/\ =True
' —~PCHIP
0.8} -DBI |
: PPI
06| [
> J‘-“ .
041 ‘
///
02 \
0/—’ ey
-1 -0.5 0 0.5 1
X

Fig. 4.2: Approximation of fi(x) with N = 16 points using PCHIP, DBI, and PPI. The
interpolants from DBI and PPI are in Pg, where 8 is the target polynomial degree. The
parameters €y and €; are set to 0.01 and 1.0, respectively.
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extremum. However, the right-biased stencils does not include x;_;, and the left-biased
stencil does not include x;,. To resolve these issues due to biased stencils, the algorithm
introduced here favors a symmetric stencil over the ENO stencil in addition to enforcing
the requirements for data boundedness or positivity preservation. A symmetric stencil
centered around x; includes x;_; and x;,, and better approximates a hidden local extremum
compared to a biased stencil.

Before we present the algorithm for the DBI and PPI method, let us define 7\].;1 and )_\;jrl.
At any given step j, the next point inserted into V; can be to the right or left. /_\j;l and /_\]11

correspond to the case where the stencil inserted is to the left and right, respectively.

{1;1::L41 with Vi = {x,} UV, (4.79)

/_\]trl = }L]'_,_l with V1 =V, U {xq}.
As areminder, x, and x, are the mesh points immediately to the left and right of V;. Given
V;, let y} be the number of points to the left of x; and y the number of points to the right.
Below we introduce an algorithm for DBI and PPI based on the procedures introduced
above.

Input: {x;}1" o, {u;}",, {%i}",, €0 and d. Output: {i;}7.
1. Select an interval [x;, x;41]. Let Vo = {x;, x;41} = {x}, x}.

2. If 0;_10i41 < 0oro;_10; < 0, then the interval I; has a hidden local extremum. For the
boundary intervals, we assume that the divided differences to the left and right have

the same sign.

3. Compute u,i, and u,,, using Equations (4.46) and (4.47).

4. Compute m, and m, based on Equations (50) and (51) or Equations (72) and (73). For
DBI, set m;, = 1 and m, = 0.

5. Given a stencil V;,

LR 3+ + T +
o if B, <f,, <B <1, < B,

j+1 < B} and By,

j+1
- if y} <y then insert a new stencil point to the left;

- else if ‘ué > p; then insert a new stencil point to the right;



78

I

— else insert a new stencil point to the right if |7t]- 1l > |7\]’ 1|, otherwise insert

a new point to left;

< BF

o elseif B, < A 1

i1 S AL S then insert a new stencil point to the left;

e p— 3+ +
o elseif B]'Jr1 < Aj+1 < Bj+1,

then insert a new stencil point to the right;
6. This process (Step 3) iterates until the halting criterion that the ratio of divided
differences lies outside the required bounds stated above or the stencil has d + 1

points, with d being the target degree for the interpolant.

7. Evaluate the final interpolant U’(x) (for DBI) or U?(x) (for PPI) at the output points

%; that are in I;.
8. Repeat Steps 1-7 for each interval in the input 1D mesh.

At the left and right boundary intervals, there are no mesh points beyond the boundaries
to calculate 0;_; and 0,1, respectively. At both boundaries, 0;_; is set to ;11 (6;_1 = 0i+1)
to ensure that no new extrema are introduced. At the boundary and nearby boundary
intervals, the algorithm allows for hidden local extrema to be recovered. For example, if the
right boundary interval has a hidden extremum ¢;_10; < 0 (from Step 2) then the algorithm

will relax the bounds on the interpolant and allow for the extremum to be recovered.

4.5 Numerical Experiments

In this section, we present both numerical experiments that demonstrate the properties
of our proposed methods. These experimental studies use the PCHIP, DBI, and PPI methods.
The test functions used here are taken from test problems 1, 2, 7, and 10 in [77]. A full
suite of test problems has been undertaken by the authors in [77]. In that study, nine test
problems are used with both uniform and nonuniform Legendre-Gauss-Lobatto (LGL)
meshes. The Legendre-Gauss-Lobatto mesh consists of uniform elements with eight LGL
quadrature nodes [36] inside each element. The integrals in the L>—norm calculation are
approximated using the trapezoid rule with 10* uniformly spaced points. The parameter €,
is set to 0.01 to allow the interpolant in each interval to grow beyond the data in a bounded

way.
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For various problems, including all the examples below, a standard Lagrange interpolant
leads to large oscillations and negative values. The ENO and WENO methods reduce the
oscillations, but they do not address the issue of preserving data boundedness or positivity.
The DBI and PPI methods resolve both issues. The numerical experiments compare the DBI
and PPI methods against the widely used PCHIP method, and show approximation errors
using the algorithm described in Section

4.5.1 1D Example: Runge Function

Our first example uses the Runge [23] function, defined as follows:

1

filx) = 1152 * € [-1,1]. (4.80)

Approximating the Runge function via a standard global polynomial using the set of points
provided for the experiment leads to large oscillations and negative values.

Tables |4.1/and |4.2show L?-errors and convergence rates when approximating the Runge
function f;(x) using the uniform and LGL meshes. For the approximations in Table we
use the PCHIP, DBI, and PPI methods with a target polynomial degree d = 3; whereas in
Table 4.2} we use the DBI and PPI methods with the target polynomial degree varying from
d = 1tod = 16. The results in Table 4.1lshow that the DBI and PPI methods lead to smaller
errors and larger convergence rates compared to PCHIP for N larger than 17 in both the
uniform and LGL mesh examples. For N = 17, the PCHIP approach leads to smaller errors.
For higher polynomial degrees, the PPI method gives better results compared to the DBI
and PCHIP, as demonstrated in Table These results demonstrate that the PPI method is
a suitable approach for interpolating data from one mesh to another when the underlying

function is similar to the Runge function.



80

Table 4.1: L2-errors and rates of convergence when using the PCHIP, DBI, and PPI methods
to approximate the function f(x). The parameters €y and €; are set to 0.01 and 1.0,
respectively. N represents the number of input points used to build the approximation. The
approximation functions for the DBI and PPI methods are cubic interpolants.

N \ PCHIP Rate DBI Rate PPI Rate
Uniform Mesh

17 | 7.15E-03 - 1.01E-02 - 1.01E-02 -
33 | 1.91E-03 199 1.21E-03 3.20 1.59E-03 2.78
65 | 3.70E-04 242 9.64E-05 3.73 1.12E-04 3.92
129 | 6.79E-05 247 6.29E-06 3.98 6.29E-06 4.20
257 | 1.22E-05 2.49 3.94E-07 4.02 3.94E-07 4.02
LGL Mesh

17 | 475E-03 -  8.36E-03 -  8.38E-03 -
33 | 1.30E-03 196 1.84E-03 2.28 1.84E-03 2.28
65 | 2.86E-04 223 2.05E-04 324 205E-04 3.24
129 | 5.81E-05 232 1.17E-05 4.17 1.17E-05 4.17
257 | 1.15E-05 2.35 1.04E-06 3.51 1.04E-06 3.51

For N = 17 in this example, the higher order terms added when going from Pg to
P16 increase the L2 —error norms. These results indicate that resolution for N = 17 is not
sufficient to see polynomial convergence when going from Pg to P14. The L?—errors norms
decrease with larger values of N.

Fig. shows the errors found when approximating the Runge function f;(x) with
PCHIP, DBI, and PPI. The top and bottom plots in Fig. |4.3|show the absolute errors when
approximating the Runge example using N = 33 and N = 129 uniformly spaced points,
respectively. The target polynomial degree is set to d = 8 for both the DBI and PPI methods
and €y = 0.01. The errors around the middle of the domain dominate the overall error. The
relaxed nature of the PPI method allows for higher degree interpolants compared to the

DBI and PCHIP, which leads to better approximations, as shown in the bottom plots in Fig.
A3

4.5.2 1D Example: Smoothed Heaviside Function

This 1D example uses an analytic approximation of the Heaviside function defined as

B 1
1 4 p—2kx’

fao(x) k =100,and x € [-0.2,0.2]. (4.81)

A polynomial approximation of f(x) is challenging because of the large solution gradient

around x = 0. Attempts to use a standard polynomial approximation for this function result
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Table 4.2: L2-errors and rates of convergence when using the DBI and PPI methods to
approximate the function f; (x). The parameters €y and €; are set to 0.01 and 1.0, respectively.
N represents the number of input points used to build the approximation. The interpolants
are in P;, where j is the target polynomial degree.

Uniform Mesh LGL Mesh
N DBI PPI DBI PPI
LZ-error Rate LZ-error Rate LZ-error Rate LZ-error Rate
P1
17 | 2.16E-02 - 2.16E-02 - 1.69E-02 - 1.69E-02 -

33 | 6.02E-03 1.92 6.02E-03 1.92 5.84E-03 1.60 b5.84E-03 1.60

65 | 1.52E-03 2.03 1.52E-03 2.03 1.66E-03 1.86 1.66E-03 1.86
129 | 3.82E-04 2.02 3.82E-04 2.02 5.80E-04 1.53 b5.80E-04 1.53
257 | 9.56E-05 2.01 9.56E-05 2.01 1.52E-04 194 152E-04 1.94
Py

17 | 8.34E-03 - 7.02E-03 - 6.55E-03 - 6.54E-03 -
33 | 5.91E-04 399 b591E-04 3.73 7.62E-04 324 7.62E-04 3.24

65 | 4.26E-05 3.88 239E-05 4.73 5.30E-05 393 b5.29E-05 3.94
129 | 2.68E-06 4.03 8.00E-07 4.95 344E-06 3.99 344E-06 3.99
257 | 8.63E-08 4.99 2.55E-08 5.00 8.88E-08 5.31 8.87E-08 5.31
Pg

17 | 4.61E-03 - 3.11E-03 - 3.49E-03 - 4.40E-03 -
33 | 443E-04 3.53 1.51E-04 4.56 1.76E-04 450 1.76E-04 4.85

65 | 3.67E-05 3.67 1.05E-06 7.33 3.25E-06 5.89 3.01E-06 6.00
129 | 2.56E-06 3.88 3.10E-09 8.50 5.64E-08 5.91 8.82E-09 851
257 | 8.24E-08 4.99 6.80E-12 8.88 3.51E-09 4.03 396E-11 7.84
P16

17 | 4.34E-03 - 3.44E-03 - 4.89E-03 - 5.01E-03 -
33 | 4.21E-04 3.52 4.85E-05 6.43 1.18E-04 5.62 1.17E-04 5.67

65 | 3.67E-05 3.60 5.92E-08 9.89 1.22E-06 6.75 9.40E-08 10.51
129 | 2.56E-06 3.88 4.21E-12 13.94 557E-08 4.50 1.02E-11 13.32
257 | 8.24E-08 4.99 2.18E-16 14.32 3.51E-09 4.01 5.04E-16 14.38

in oscillations and negative values.

Tables and show L2-errors and convergence rates when approximating the
smoothed Heaviside function f,(x) using the uniform and LGL meshes. Table[4.4|shows that
for a target polynomial of degree d = 3, the errors for PCHIP, DBI, and PPI are comparable.
When the target degree increases from d = 1 to d = 16, the errors for the DBI and PPI
methods decrease, as shown in Table Overall, the errors from the DBI and PPI methods
are comparable with DBI yielding slightly smaller errors than PPI. The uniform mesh leads
to better approximation results compared to the LGL mesh. These results demonstrate that

the DBI and PPI methods are both suitable for mapping data between different meshes
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Fig. 4.3: Error plots when approximating fi(x). The top and bottom error plots are obtained
from approximating f1(x) with N = 33 and N = 129 uniformly spaced points, respectively.
The target polynomial degree is set to d = 8 and €y = 0.01.

when the underlying function is similar to the smoothed Heaviside function.

Fig. [£.4 provides examples of error plots for approximating the smoothed Heaviside
function f,(x) with PCHIP, DBI, and PPI. The top and bottom plots in Fig. 4.4/ show the
absolute error when approximating the smoothed Heaviside function f,(x) using N = 33
and N = 129 uniformly spaced points, respectively. The global error is dominated by the
errors in the region with the steep gradient around x = 0. The errors from DBI and PPI are
identical for N = 129 because the stencil selected by both methods are the same around the
region with the steep gradients. Away from the steep gradient, the DBI and PPI methods
use different stencils, but the errors in those regions are negligible compared to the errors

around x = 0.
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Table 4.3: L2-errors and rates of convergence when using the PCHIP, BDI, and PPI methods
to approximate the function f>(x). The parameters €y and €; are set to 0.01 and 1.0,
respectively. N represents the number of input points used to build the approximation. The
approximation functions for the DBI and PPI methods are cubic interpolants.

N PCHIP Rate DBI Rate PPI Rate
Uniform Mesh

17

33

65
129
257

2.02E-02
3.38E-03
3.59E-04
4.21E-05
5.12E-06

2.70
3.31
3.13
3.06

1.97E-02

3.53E-03 2.59
5.00E-04 2.88
4.51E-05 3.51
3.01E-06 3.93

1.97E-02
3.54E-03
5.00E-04
4.51E-05
3.01E-06

2.59
2.89
3.51
3.93

LGL Mesh

17
33

65
129
257

3.65E-03
1.45E-03
4.07E-04
8.85E-05
1.38E-05

1.39
1.87
2.23
2.70

5.38E-03
1.55E-03
6.49E-04
9.77E-05
9.06E-06

1.88
1.28
2.76
3.45

5.38E-03
1.56E-03
6.49E-04
9.77E-05
9.06E-06

1.86
1.30
2.76
3.45
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Fig. 4.4: Error plots when approximating f»(x). The top and bottom error plots are obtained
from approximating f1(x) with N = 33 and N = 129 uniformly spaced points, respectively.
The target polynomial degree is set tod = 8, ¢y = 0.01, and €; = 1.0.
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Table 4.4: L2-errors and rates of convergence when using the DBI and PPI methods to
approximate the function f,(x). The parameters €y and €; are set to 0.01 and 1.0, respectively.
N represents the number of input points used to build the approximation. The interpolants
are in P;, where j is the target polynomial degree.

Uniform Mesh LGL Mesh
N DBI PPI DBI PPI
L2-error Rate LZ-error Rate LZ-error Rate LZ-error Rate
P1
17 | 2.89E-02 - 2.89E-02 - 8.58E-03 - 8.58E-03 -

33 | 7.69E-03 199 7.69E-03 1.99 524E-03 0.74 5.24E-03 0.74

65 | 1.80E-03 2.14 1.80E-03 2.14 2.20E-03 1.28 2.20E-03 1.28
129 | 458E-04 2.00 4.58E-04 2.00 8.08E-04 1.47 8.08E-04 147
257 | 1.15E-04 2.00 1.15E-04 2.00 2.01E-04 201 201E-04 2.01
Py

17 | 2.23E-02 - 2.23E-02 - 5.24E-03 - 5.24E-03 -

33 | 4.09E-03 256 4.10E-03 2.56 1.10E-03 2.36 1.11E-03 234

65 | 3.05E-04 3.83 3.05E-04 3.84 3.06E-04 1.88 3.07E-04 1.89
129 | 1.35E-05 4.55 1.35E-05 4.55 332E-05 324 3.32E-05 3.24
257 | 4.71E-07 4.87 4.71E-07 4.87 1.17E-06 4.85 1.17E-06 4.85
Pg

17 | 2.08E-02 - 2.08E-02 - 4.87E-03 - 4.68E-03 -

33 | 3.36E-03 275 3.33E-03 2.76 871E-04 259 7.84E-04 2.69

65 | 1.38E-04 470 1.38E-04 4.69 7.57E-05 3.60 1.24E-04 272
129 | 1.22E-06 690 1.22E-06 6.90 2.17E-06 5.19 217E-06 5.90
257 | 4.44E-09 8.15 4.44E-09 8.15 1.95E-08 6.83 195E-08 6.83
P16

17 | 2.00E-02 - 2.00E-02 - 4.83E-03 - 4.64E-03 -

33 | 293E-03 290 291E-03 291 7.38E-04 2.83 7.27E-04 2.80

65 | 9.17E-05 5.11 9.17E-05 5.10 7.60E-05 335 941E-05 3.02
129 | 1.70E-07 9.17 1.70E-07 9.17 2.88E-07 8.14 2.88E-07 8.45
257 | 2.64E-11 12.73 2.64E-11 12.73 5.39E-11 1245 5.39E-11 12.45

4.5.3 Hidden Local Extrema Examples

This numerical study demonstrates the ability of the PPI method to recover hidden
extrema. The study uses the Runge functions f;(x) with a uniform mesh. The uniformly
spaced mesh points are constructed such that the extremum at x = 0 lies inside of an
interval. Tables shows L?-error norms and convergence rates when approximating
f1(x) from Equations {#.80). Overall, the PPI method achieves high-order accuracy when
approximating the Runge functions from data with and without hidden extrema. The results
from both tables show that the PPI method leads to smaller errors and larger convergence

rates compared to the DBI method. The DBI approach uses a bounded interpolant that
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Table 4.5: L2-errors and rates of convergence when using the DBI and PPI methods to
approximate the function f;(x). The parameters €y and €; are set to 0.01 and 1.0. The
uniform mesh used to build the approximation is constructed with N points . The
interpolants are in P;, where j is the target polynomial degree.

N DBI PPI
L?-error Rate L%-error Rate
Py
16 | 2.81E-02 - 2.81E-02 -

32 | 6.41E-03 2.13 6.41E-03 2.13

64 | 1.57E-03 2.03 1.57E-03 2.03
128 | 3.88E-04 2.02 3.88E-04 2.02
256 | 9.63E-05 2.01 9.63E-05 2.01
Py

16 | 2.81E-02 - 1.37E-02 -

32 | 4.72E-03 2.57 6.85E-04 4.32

64 | 8.14E-04 2.54 257E-05 4.73
128 | 1.42E-04 2.52 8.32E-07 4.95
256 | 2.49E-05 2.51 2.60E-08 5.00
Pg

16 | 2.74E-02 - 1.07E-02 -

32 | 4.69E-03 2.55 2.06E-04 5.70

64 | 8.14E-04 2.53 1.19E-06 7.43
128 | 1.42E-04 2.52 3.32E-09 8.49
256 | 2.49E-05 2.51 7.04E-12 8.88
P16

16 | 2.75E-02 - 1.02E-02 -

32 | 4.69E-03 2.55 1.43E-04 6.16

64 | 8.14E-04 2.53 7.18E-08 10.96
128 | 1.42E-04 2.52 4.74E-12 13.89
256 | 2.49E-05 2.51 2.77E-16 14.06

fails to represent the extremum at x = 0, whereas the relaxed nature of the PPI approach
allows for a more accurate representation of the extremum. In the case of DBI, as the
target polynomial degree increases from Py to Py, the errors and convergence rates do not
improve because the global error is dominated by the local error in the interval with the
hidden extremum. The DBI approach achieves only an O(h*°) accuracy as opposed to the
PPI method, that achieves the same high accuracy regardless of whether or not the extremal
values are data points. These results highlight the advantage of the PPI method over the

DBI method for recovering hidden extrema from data.
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4.6 Summary and Discussion

In this chapter, we present both an algorithm and theoretical foundations for sufficient
conditions to ensure data boundedness and positivity on any set of mesh points via a
Newton polynomial formulation. The one-dimensional PPI and DBI methods analyzed
herein are building blocks that have been extended to multidimensional PPI and DBI
methods using tensor-products. This extension consists of successively applying the one-
dimensional PPI or DBI method on each dimension to generate the multidimensional
results.

The DBI method imposes restrictions on the ratio of divided differences to ensure that
the interpolants are bounded by the input data. The proof of the DBI approach presents new
challenges because the configuration of mesh points may not exhibit a regular structure.
The PPI method starts from the DBI method and relaxes the bounds on the ratio of divided
differences, thereby allowing the interpolants to grow beyond the data as needed while
remaining positive. The positive interpolant is further bounded by the parameters u,,;, and
Umax to remove undesirable oscillations that may potentially degrade the approximation.
The proofs of both the DBI and PPI approaches rely on the results from Lemma which
consist of using the definition of B;’, B ]-_ to arrive at the bounds B ].:1 < /_\j,léj < B].tl. The
proofs from Theorems and use Lemma to show that 0 < S,(x) < 1 for the
DBI method and m; < S,,(x) < m, for the PPI method.

Note that one observation we have made is that the PPI method uses higher order
interpolants compared to the DBI method. Relaxing the bounds on the ratio of divided
differences increases the range of polynomial degrees that meet the desired requirement.
The numerical results, in Tables indicate that the DBI or PPI methods provided
herein are appropriate for ensuring data boundedness or positivity preservation, and both
methods converge as the interpolant degree and resolution increase. Fig. 4.1|demonstrates
that enforcing positivity alone may not be sufficient to remove large oscillations. We resolve
this issue by bounding the positive polynomial with u,,;, and 1,,,x, which are determined
based on user-supplied values, such as €y = 0.01 for the numerical examples in Section
In addition, Fig. demonstrates that for an interval I; where there exists a local
extremum, the PCHIP and DBI methods truncate the extremum whereas the PPI method

leads to a better approximation of the extremum. The different results demonstrated that
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the PPI method is able to produce high-order accurate approximations in examples with

and without a hidden extremum.



CHAPTER 5

NUMERICAL TESTING OF THE
POSITIVITY-PRESERVING AND
DATA-BOUNDED INTERPOLATION

Introduction

This chapter is concerned with the numerical testing of new interpolation algorithm
that has been introduced in Chapter {4 for positivity preservation when mapping solution
values between structured meshes. The theoretical basis for the algorithm builds on the
data-bounded work of Berzins [5] to develop a new data-bounded and positivity-preserving
methods for both evenly- and unevenly-spaced structure meshes. The new data-bounded
interpolation (DBI) method in introduced in the previous chapter relaxes conditions for data
boundedness, which gives greater accuracy than the conditions used in [5]. Ouermi et al.
[82]] further extended the DBI method to give a new positivity-preserving interpolation (PPI)
method. The application of these new methods to numerical weather prediction examples
is described in [78]. In this chapter, a number of possible alternative interpolation schemes
are introduced. A representative sample of such methods is compared against the new
approaches on a number of different test functions, including smooth, CY discontinuous,
and steep-gradient functions. The comparison undertaken focuses on how accurately the
different methods are able to represent this underlying set of test functions. In addition,
a representative weather model problem is considered. Overall, it will be shown that the
new methods are well suited for function approximation and mapping data values between
meshes for numerical weather examples. The generality of this approach suggests that
these methods also have application to other problems for which preserving positivity is

important.
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5.1 Examples of Existing Interpolation Methods
This section highlights several approaches that have been developed to address the need
for data-bounded, positivity-preserving, and shape-preserving interpolation. Although
this selection of methods is not all-inclusive, it is intended to illustrate the main types of

polynomial-based approaches.

5.1.1 Cubic Splines

In computer-aided design (CAD), graphics and visualization, significant contributions
have been made to develop and advance shape-preserving methods. Many of the ap-
proaches for shape-preservation are based on cubic splines. In [89] and [90] Schmidt and
Hef3 introduced positive interpolation methods using rational quadratic and cubic splines
respectively. Necessary and sufficient conditions for positivity are provided for both the
rational quadratic and cubic interpolants. These conditions impose some restrictions on
the values of the first derivatives at each node. As in [41], both approaches lead to multiple
solutions, and the one with the minimal curvature is selected. The work in [54], [53]], and [47]]
presented positivity-preserving interpolation methods that rely on rational cubic splines.
The C? continuity in [54] is obtained by solving a tridiagonal system of linear equations.
All three methods introduce free parameters that are used to derive and enforce conditions
for positivity. Butt and Brodlie [10] provide a method for constructing C! cubic Hermite
splines. This method is dependent on the availability of values of first derivatives at the
nodes, which may not be available in practice. Positivity is enforced by imposing a bound
on the values of the derivatives. In the case where bounds on the derivatives are not met,
one or two knots are inserted to ensure that the constructed spline is positive. Perhaps the
most widely used approach for preserving monotonicity in many applications is PCHIP by
Fritch and Carlson [33] who derived necessary and sufficient conditions for monotone cubic
interpolation, and provided an algorithm for building a piecewise cubic approximation
from data. This algorithm calculates the values of the first derivatives at the nodes based on

the necessary and sufficient conditions.

5.1.2 Quartic and Quintic Splines
Although many shape-preserving interpolation methods are cubic or lower order, a

number of approaches target higher order interpolants, with an emphasis on quartic or
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quintic polynomial approximations. The work in [26] and [25] presents geometric or
visual continuity G! and G? continuous shape-preserving interpolation using Pythagorean-
Hodograph quintic splines curves. This approach uses Bernstein basis functions and a
parametric representation of the interpolant in each interval. A sufficient condition for
shape preservation is constructed based on free angular parameters that influence the
shape of the curve in each interval. The appropriate angular parameters are selected based
on the cubic-cubic (CC) criterion introduced in [24]. The G? case requires a tridiagonal
solve and use of a Newton-Raphson iteration, which potentially affects the computational
performance.

Hussain et al. [46] and Hussain et al. [48] introduced C? rational quintic interpolation
interpolation approaches that preserve positivity. These rational quintic functions are
constructed with free parameters that are used to enforce positivity. Both methods require
the approximation of values of first and second derivatives at the nodes if these derivatives
are not available. In addition, the rational quintic interpolation methods in [46] and [48]]
have a O(h®) order of accuracy.

Hefs and Schmidt [41] developed interpolation schemes that preserve positivity and
monotonicity using C? quartic and quintic splines. Positivity and monotonicity are achieved
by imposing some restrictions on the values of the first and second derivatives at each node.
This approach leads to a potentially infinite number of solutions that meet the required
conditions. Of these solutions, the solution with minimal curvature is selected using global
minimization. The global nature of the minimization makes the algorithm challenging
to parallelize and may have an impact on computational performance. MQS [64] is an
example of a monotonic quintic spline method that was developed by Lux et al. [64] who
built on the work of Hefs and Schmidt [90] and Ulrich and Watson [104]. This algorithm
uses the sufficient conditions from [90] to check for monotonicity and the work in [104]
to adjust values of the first and second derivatives to ensure monotonicity. This method
requires the values of the first and second derivatives at the nodes, which may not be
available in practice. In this report, the first and second derivatives are approximated using

a fourth-order finite difference stencil based on [30].
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5.1.3 SPS and B-Spline Higher Order Splines

Costantini [15], [14] developed a C! and C? shape-preserving spline (SPS) interpolation
method using Berstein-Bezier polynomials of an arbitrary degree. The desired shape
property is obtained by imposing restrictions on the value of the first derivatives at the
nodes. The Bezier coefficients for each spline are derived from a linear function. For a given
interval, the coefficients of the Berstein-Bezier polynomial interpolant are selected from
a linear function. The first derivatives at the nodes are calculated such that the sufficient
conditions for shape preservation given in [15] are met. The approximation of the first
derivatives at the node is third-order accurate. In addition, Theorem 9 of [13] shows that the
spline method presented in [15] [14] has an error of O(h*). More details on the construction
of the splines, an algorithm and a software package for the SPS method can be found
in [15] [14]. In addition to the positivity-preserving approaches, conventional B-splines [19]
are also used here. Although the B-spline approach does not preserve positivity, many of
the approaches mentioned in this work are based on B-splines, and so the use of unmodified

B-splines provides an accuracy check on the other spline methods.

5.1.4 DBI and PPI Methods

The numerical solution of partial differential equations (PDEs), particularly hyperbolic
equations, is an another area in which various methods have been developed to enable
data-bounded and positivity-preserving approximations. In order to preserve positivity
in discontinuous Galerkin (dG) schemes, Zhang et al. [110], [113], [111] and Light et al.
[60] introduced a linear rescaling of polynomials that ensures that the evaluation of the
polynomial at the quadrature points is positive. In addition, this linear rescaling of the
polynomial conserves mass. The polynomial rescaling, however, does not address the
case of interpolating between different meshes, which is the primary focus of this work.
Harten et al. [39] developed an essentially nonoscillatory (ENO) piece-wise polynomial
reconstruction that is suitable for interpolating between different meshes. ENO methods
adaptively build an interpolant based on Newton divided differences and can help remove
Gibbs-like effects but do not guarantee positivity. A weighted combination of ENO schemes,
(WENO) has been used by Zhang et al. [112] and many others.

A DBI method was developed by Berzins using evenly spaced meshes from ENO
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methods [5]. This method was extended by the authors in [82], [78] to work for both evenly
and unevenly spaced meshes and, more importantly, to the PPI method. Ouermi et al. [82]
relaxed the conditions for data boundedness which gives greater accuracy compared to
the conditions used in [5]. Both the improved DBI and the new PPI methods are used
in this chapter. The PPI method further extends the DBI method by relaxing the bounds
on the ratio of divided differences and so allows the interpolant to grow beyond the data,
while still remaining positive. For a given interval, the DBI and PPI methods successively
select stencil points until the required bounds are violated or d + 1 points are selected, with
d being the target degree of the interpolant. In addition to enforcing data boundedness
and positivity, the algorithm in [78] uses a user-supplied parameter st to guide the stencil
construction procedure. When adding the next point to both the right or left of the current
stencil meets the requirements for data boundedness or positivity, the algorithm makes the

selection based on the three cases below.

o If st = 1, the algorithm chooses the point with the smallest divided difference, as in

the ENO stencil.

o If st = 2, the point to the left of the current stencil is selected if the number of points
to the left of x; is smaller than the number of points to right. Similarly, the point to the
right is selected if the number of points to the right of x; is smaller than the number of
points to the left. When both the number of points to right and left are the same, the

algorithm chooses the point with the smallest ratio of divided differences.
o If st = 3, the algorithm chooses the point that is closest to the starting interval I;.

Enforcing positivity alone may still lead to undesirables oscillations. To address this
limitation, the algorithm provides the parameters €y and €; that are used to impose an
upper and lower bound for each interpolant. For each interval I;, the bounds are constructed
using the parameters €p and €, and the data values u; and u;,;. Both the DBI and PPI
methods and the algorithm details are described in [78] with numerical examples pertaining

to NWP.
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5.2 Comparison Methodology
5.2.1 Compared Methods

The numerical experiments in this report use the PCHIP [33], MQS [64], SPS [15], [14],
B-splines [19], the improved DBI [5], and the new PPI methods [82]. These methods are
available as follows:

PCHIP: The version of the PCHIP algorithm used in this report is implemented in
Fortran 90 and can be found at https://people.sc.fsu.edu/" jburkardt/f_src/pchip/
pchip.html.

MQS: The method of Lux et al. [64] is an example of a method for monotonic quintic
splines. The algorithm is implemented in Python3 and can be found https://github. com/
tchlux/papers/tree/master/%5B2019-11%5D_HPC_(quintic_spline).

SPS: Costantini [15], [14] introduced a high-order shape-preserving (monotonicity-
and convexity-preserving) Spline (SPS) method using Berstein-Bezier polynomials of
arbitrary degree. The SPS method is implemented in the BVSPIS software package in
Fortran 77 and is available from ACM as Algorithm 770 [14] https://dl.acm.org/action/
downloadSupplement?doi=10.1145%2F264029.264059&file=770.gz&download=true.

B-splines: PPPACK, a Fortran 90 library that evaluates piecewise polynomial func-
tions, including cubic splines. The original FORTRAN?7 library is by Carl de Boor [19].
The package is available from https://people.sc.fsu.edu/~ jburkardt/f_src/pppack/
pppack.htmll

HPPIS: The DBI and PPI methods have been developed based on the theory and

algorithm in [82], [78]. The software and implementation details can be found in [78].

5.2.2 Comparison Criteria
The three steps outlined below are used to compare the different methods when used
to approximate smooth and nonsmooth functions. The errors are measured in a discrete

approximation to the L2-error norm.

o The first step consists of demonstrating that the various schemes preserve positivity
for each of the test functions used. In addition, this step is used to show that a standard

polynomial interpolation method does not guarantee positivity.

e The second step experimentally investigates the convergence of the various schemes


https://people.sc.fsu.edu/~jburkardt/f_src/pchip/pchip.html
https://people.sc.fsu.edu/~jburkardt/f_src/pchip/pchip.html
https://github.com/tchlux/papers/tree/master/%5B2019-11%5D_HPC_(quintic_spline)
https://github.com/tchlux/papers/tree/master/%5B2019-11%5D_HPC_(quintic_spline)
https://dl.acm.org/action/downloadSupplement?doi=10.1145%2F264029.264059&file=770.gz&download=true
https://dl.acm.org/action/downloadSupplement?doi=10.1145%2F264029.264059&file=770.gz&download=true
https://people.sc.fsu.edu/~jburkardt/f_src/pppack/pppack.html
https://people.sc.fsu.edu/~jburkardt/f_src/pppack/pppack.html
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when using smooth functions. This step tests the ability of the different methods
to accurately represent smooth functions as the resolution increases. For the shape-
preserving spline (SPS) [15], [14], DBI and PPI methods, we also investigate the

approximation accuracy obtained with varying interpolant polynomial degrees.

e The third step focuses on the ability of the different methods to represent a set of
challenging test functions with large gradients and/or discontinuities. This step
represents situations often encountered in computational science problems, such as

mapping between physics and dynamics meshes in NEPTUNE.

5.3 Positivity-Preserving Interpolants
Preserving positivity while maintaining accuracy is perhaps the key property needed
when mapping from one mesh to another in NEPTUNE and similar applications. This
section compares the PCHIP, MQS, SPS, DBI, and PPI against a standard interpolation
method using five examples. The standard polynomial interpolation approach (STD) uses
the points in each element to build a standard Lagrange interpolant for that element. In

each of the examples, the different interpolants are constructed using:

¢ a uniform mesh that is constructed using uniformly spaced points. In this mesh, all
the elements have the same size and the nodes are uniformly spaced inside each

element.

In the figures presented in this section, the black and red plots represent the underlying
function and its approximation using the different interpolation methods. Both the DBI
and PPI methods use a mesh point selection method that favors a symmetric stencil about
x; by setting st = 1 with €9 = 0.01 and €; = 1.0. The results in this section demonstrate
that the PCHIP, MQS, DBI, SPS, and PPI methods preserve positivity, whereas the standard

interpolation methods lead to oscillations and fail to preserve positivity.

5.3.1 ExampleI fi(x)

This example uses the famous Runge function [23]] defined as follows:

filx) = 1+125x2 x € [-1,1]. (5.1)
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Fig.|5.1shows the different polynomial approximations for this function using 17 uniformly
spaced points. The target polynomial degree for the standard interpolation, DBI, and PPI
is set to d = 16. The standard polynomial interpolation approach, STD, does not preserve
positivity with the uniform mesh and generates oscillations in both meshes. The PCHIP,

MQS, DBI, SPS, and PPI methods preserve positivity.

5.3.2 Example II f,(x)
The second example uses an analytic approximation of the Heaviside function defined

as follows:
1

fa(x)

A polynomial approximation of f,(x) is challenging because of the large gradient at about

x = 0. Attempts to use a global polynomial approximation for this function result in

STD SPS

X X
PCHIP MQS
15 15
1 1
o _A o /\
OF == cammmmeme e a o=y OFF==cccmmcameao gy
-0.5 -0.5
-1 0 1 -1 0 1
X X
DBI PPI
1.5 1.5
1 1
os A s A
[N e L EE [N e L
-0.5 -0.5
-1 0 1 -1 0 1
X X

Fig. 5.1: Approximation of the Runge function with the N = 17 points that are uniformly
distributed on the interval [—1, 1]. The parameters d, €y and €; are set to 16, 0.01, and 1.0,
respectively.
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unacceptable oscillations and negative values as observed in the Runge example above. Fig.
shows interpolations of f,(x) using uniform mesh of 17 points. Standard polynomial
interpolation, DBI, and PPI are used with an interpolant of degree d = 8 for each interval.
Standard polynomial interpolation fails to preserve positivity. The results demonstrate that

the PCHIP, MQS, DBI, SPS, and PPI methods preserve positivity.

5.3.3 Example III f3(x)
The third example uses a modified version of a function introduced by Tadmor and
Tanner [102] and used by Berzins [5] in the context of DBI based upon uniform mesh points.
The original function was modified by adding the value one to ensure that the function is

positive over the interval [—1, 1]. The modified function is defined as

STD SPS

Fig. 5.2: Approximation of fo(x) = {7, k = 100,and x € [-0.2,0.2], with N = 17
points. The parameters €y and €; are set to 0.01 and 1.0, respectively. The points are
uniformly distributed, and the target polynomial degree for the DBI and PPl is d = 8.
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14 250002y [—1,-0.5)

i1
f3(x) = (5.3)
1—sin(3%*+ %), xe[-051].
This function is particularly challenging because of the discontinuity at x = —0.5. This
example uses 17 uniformly spaced points. The target interpolant degree for the standard
interpolation, DBI, and PPI methods is d = 4. Fig. [5.3|demonstrates that the interpolants
built using the PCHIP, MQS, SPS, SPS and PPI methods remain positive whereas the

standard polynomial interpolation approach fails to preserve positivity.

5.3.4 Example IV f;(x)

This example consists of a function with multiple spikes defined as follows:

fa(x) =1.0— ‘iarctan( 5 , x€]0,1], (5.4)

STD SPS

Fig. 5.3: Approximation of f3(x) with N = 17 points. The parameters d, €y, and € are set to
4,0.01, and 1.0, respectively. The points are distributed uniformly over the interval [—1, 1].
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where & represent the element size, and 6 = 0.01. f4(x) depends on the element size &, and
therefore, on the number of element in a given interval. At the element boundaries, fa(x)
is C0-continuous with large gradients of opposite signs. This example uses 33 points, four
elements, and nine points in each element. The approximations in Fig. 5.4 use uniform
points. The plots in Fig. |5.4{show the standard polynomial interpolation approach leads
to oscillation and negative values, whereas the PCHIP, MQS, SPS, DBI, and PPI methods

preserve positivity and remove the oscillations.

5.3.5 Example V f5(x)
This example is constructed using the tanh function and by introducing C%-continuities

at the elements boundaries. The constructed function is defined as follows:

STD SPS
1 il
>0.5 >0.5
0 0
0 0.5 1 0 0.5 i
X X
PCHIP MQS
il Al
>0.5 >0.5
0 0
0 0.5 1 0 0.5 1
X X
DBI PPI
1 1
>0.5 >0.5
0 0
0 0.5 1 0 0.5 i
X ¥

Fig. 5.4: Approximation of f4(x), with N = 33 points. The parameters ¢ and €; are set to
0.01, and 1.0, respectively. The points are uniformly distributed, and the target polynomial
degree for the DBl and PPl is d = 8.
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tanh(xk) ifx € [a,a+h|
2tanh(xk) — tanh((a + h)k) ifx € a+ha+2h]
folx) = 3tanh(xk) — tanh((a + h)k) — tanh((a + 2h)k) if x € [a + 2h,a + 3H] (5:5)

where the overall interval is [—2,0] with a = —2 and k = 10. h represents the size of each
element. f5(x) depends on the element size / and, therefore, on the number of elements in a
given interval. This example is built to mirror the C-continuity at the elements boundaries
in the spectral element method used in NEPTUNE. In this example, the gradients at the
elements boundaries are always positive, and are not as large as the ones in f;(x) from
Example IV. The approximations shown in Fig. [5.5|uses 17 points. The plots in Fig. [5.5[show
that the standard interpolation method does not preserve positivity and that the PCHIP,

MQS, SPS, DBI, and PPI can be used to enforce positivity as required.

STD SPS
1 1
0.5 0.5
> >
0 - - 0
2 1 0 2 1 0
X X
PCHIP MQS
1 1 Q
0.5 0.5
> >
0 -- 0
2 1 0 2 1 0
X X
DBI PPI
1 1
0.5 0.5
> >
0 -- 0
2 1 0 2 1 0
X X

Fig. 5.5: Approximation of f5(x), with N = 17 points. The parameters €y, and € are set to
0.01 and 1.0, respectively. The points are uniformly distributed and the target polynomial
degree for the DBI and PPl is d = 4.
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5.4 Convergence

This section focuses on the second comparison criterion, which consists of evaluating
the convergence of the different methods when applied to a smooth function. As NUMA
[34], the dynamics part of NEPTUNE uses a spectral element method that has high-order
accuracy, especially in smooth regions. It is important when interpolating solution values
between dynamics and physics meshes for the interpolation scheme to not degrade the
accuracy obtained from the spectral element method.

The test function

fo(x) =1+sin(x),x € [0, 7] (5.6)

is used to study the convergence of the different methods. fs(x) is infinitely smooth with
no sharp gradients or discontinuities. These characteristics make f¢(x) a suitable test
function for evaluating which approach is a good choice for representing smooth functions.
These experiments focus on the accuracy of the approximation as the resolution and the
polynomial degree both increase.

Table 5.1{shows L2-errors when approximating fe(x) using the different interpolation
methods. In this experiment, the parameters €y, €1, and st are chosen to be 0.01, 1, and 1,
respectively. In all cases, the L?-error is estimated by sampling the error at 10000 equally
spaced points in the interval and using trapezoidal quadrature. Table 5.2|shows the ratio,
en;/en;,, of the L2-errors in Table|5.1|as the resolution increases. The DBI and PPI methods
lead to smaller errors compared to the PCHIP, MQS, and SPS methods. As the average
polynomial degree increases, the approximation using the DBI method does not improve
because the global error is dominated by the local error from the intervals using lower degree
interpolants compared to PPI. These results show that the conditions for data-boundedness
may be more restrictive when it comes to enforcing positivity. The SPS method shows
smaller errors compared to the other methods. Furthermore, as the polynomial degree
increases, the accuracy of the approximation decreases. These results are consistent with
those in [15] [14]. Costantini [13], [15] demonstrated that the SPS method is bounded
by O(h*) and in the limit (as the spline degree increases) the spline tends to a linear
interpolation. The B-spline and PPI methods have smaller L?-errors compared to the other
methods, and their accuracy improves as the polynomial degree increases. Table 5.2|shows

that both methods have better convergence rates compared to PCHIP, MQS, and SPS. The
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Table 5.1: L2-errors when using the PCHIP, MQS, SPS, B-splines, DBI, and PPI methods to
approximate the function f¢(x). The parameters €y and €; are set to 0.01 and 1.0, respectively.
N; represents the number of input points used to build the approximation. P; represents
the space of polynomials of degree j, with j being the target degree for each interval. The
seventh and ninth columns show the average polynomial degree used for the DBI and PPI
methods, respectively. The input points are uniformly distributed over the interval [0, 7t|.

N; | PCHIP MQS SPS B-spline DBI PPI
L*-error | L?-error | L?-error | L2-error | L?-error avg. deg. | L*-error avg. deg.
Py
17 - - - - 2.49E-3 1 2.49E-3 1
33 - - - - 6.22E-4 1 6.22E-4 1
65 - - - - 1.56E-4 1 1.56E-4 1
129 - - - - 3.89E-5 1 3.89E-5 1
257 - - - - 9.72E-6 1 9.72E-6 1
Ps Ps Py
17 | 449E-4 | 447E-5 | 4.84E-4 | 4.52E-6 | 6.70E-06 3.94 2.52E-06 4
33 | 7.83E-5 | 7.42E-6 | 1.20E-4 | 2.07E-7 | 2.85E-07 3.97 6.94E-08 4
65 | 1.38E-5 | 1.31E-6 | 3.01E-5 | 1.22E-8 | 1.24E-08 3.98 1.96E-09 4
129 | 2.45E-6 | 2.31E-7 | 7.52E-6 | 7.56E-10 | 5.43E-10 3.99 5.73E-11 4
257 | 4.34E-7 | 4.09E-8 | 1.88E-6 | 4.72E-11 | 2.39E-11 4.00 1.73E-12 4
Ps
17 - - 2.00E-3 | 2.45E-9 | 6.21E-06 7.69 1.06E-09 8
33 - - 4.96E-4 | 3.47E-12 | 2.76E-07 7.84 1.83E-12 8
65 - - 1.24E-4 | 6.11E-15 | 1.22E-08 7.92 3.44E-15 8
129 - - 3.10E-5 | 3.23E-15 | 5.40E-10 7.96 1.00E-15 8
257 - - 7.74E-6 | 2.93E-15 | 2.39E-11 7.98 9.64E-16 8
P
17 - - 3.10E-3 | 5.61E-15 | 6.21E-06 15.19 3.98E-15 16
33 - - 7.75E-4 | 4.35E-13 | 2.76E-07 15.59 1.95E-15 16
65 - - 1.94E-4 | 2.75E-13 | 1.22E-08 15.80 4.65E-15 16
129 - - 4.84E-5 | 9.00E-14 | 5.40E-10 15.90 2.33E-15 16
257 - - 1.21E-5 | 6.83E-14 | 2.39E-11 15.95 1.10E-15 16

PPI method leads to slightly smaller errors compared to the unmodified B-spline approach.
For Pg and P4 the approximation errors are close to machine precision, which explains the

slow rate of convergence observed for B-spline and PPI in Table

5.5 Results
In this section, the different interpolation methods are used to approximate functions
with steep gradients, C’-continuity, and discontinuities. These experiments focus on the
third criterion, which consists of evaluating the ability of the different methods to represent
nonsmooth functions. The data points for the interpolation are sampled from 1D and 2D
functions. Two types of meshes are used for the various experiments. The first type of mesh

uses uniform elements and uniformly spaced nodes within each element. The second type
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Table 5.2: Ratio of L?-errors from Table5.1{(en;, /en; ). N; represents the number of input
points used to build the approximation. P; represents the space of polynomials of degree j,
with j being the target degree for each interval.

en,/en,., | PCHIP MQS SPS B-spline DBI PPI

| P
e17/e3s - - - - 4 4
e33/ ees - - - - 4 4
€65/ €129 - - - - 4 4
€129/ €57 - - - 4 4

P3 Ps | Py
e1y/es3 5.73 6.02 4.03 21.84 24 36
€33/ ee5 5.67 567 399 1697 23 35
€65/ €129 5.63 566 4.00 16.13 23 34
€129 /6257 5.64 5.66 4.00 16.02 23 33

Ps
e17/es - . | 403 70605 22 576
€33/ e65 - - 4.00 567.92 23 533
€65/ €129 - - 4.00 1.89 23 3
e129/ €257 - - 401 1.10 23 1
P16
e17/e3s - - 4.01 0.01 22 2
e33/ €65 - - 3.99 1.58 23 0
€65 /6129 - - 4.01 3.06 23 2
€129/ €57 - - 4.00 1.32 23 2

of mesh uses uniform elements and Legendre Gauss-Lobatto (LGL) quadrature nodes [36]
within each element. The experimental results compare the DBI and PPI methods against
the SPS, PCHIP [33]], and MQS [64]] methods.

The MQS algorithm is designed for monotonically increasing data. In order to use the
MQS approach with the different 1D examples, we divide the data into monotonically
increasing and decreasing regions. For the monotonically increasing data, the MQS
algorithm is applied directly. For the monotonically decreasing data, we uses the reflection
of the data about a vertical axis and applied the MQS algorithm. Because of the data
transformation involved, the MQS method is used only for the 1D examples.

The tables show the L? error norms and the averaged polynomial degree (“avg. deg.")

when using the different methods to approximate the 1D and 2D functions, respectively.

5.5.1 Examplel fi(x)
This example is the 1D Runge function [23] defined in Equation [5.1| with ¢y = 0.01,
€1 = 1 and st = 2. Tables 5.3/ and [5.4] demonstrate that the PPI method gives smaller
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Table 5.3: L2-errors when using the PCHIP, MQS, SPS, DBI, and PPI methods to approximate
the Runge function fi(x) = H;W’ x € [—1,1]. The parameters €y and €; are set to
0.01 and 1.0, respectively. Nj; represents the number of input points used to build the
approximation. P; represents the use of polynomials of degree j, with j being the target
degree for each interval. The sixth and eighth columns show the average polynomial degree
used for the DBI and PPI methods, respectively. The input points are uniformly distributed
over the interval [—1,1].

N; | PCHIP MQS SPS DBI PPI
L%-error | L*-error | L?-error | L?-error avg. deg. | L%-error avg. deg.
P
17 - - - 2.16E-2 1 2.16E-2 1
33 - - - 6.02E-3 1 6.02E-3 1
65 - - - 1.52E-3 1 1.52E-3 1
129 - - - 3.82E-4 1 3.82E-4 1
257 - - - 9.56E-5 1 9.56E-5 1
P Ps Py
17 | 715E-3 | 5.72E-3 | 8.34E-3 | 8.34E-3 4 7.02E-3 4
33 | 1.91E-3 | 3.95E-4 | 591E-4 | 591E-4 4 591E-4 4
65 | 3.70E-4 | 6.44E-5 | 4.26E-5 | 4.26E-5 3.98 2.39E-5 4
129 | 6.79E-5 | 5.27E-6 | 2.68E-6 | 2.68E-6 3.98 8.00E-7 4
257 | 1.22E-5 | 6.83E-7 | 8.63E-8 | 8.63E-8 4.00 2.55E-8 4
Ps
17 - - 1.21E-2 | 4.61E-3 7.88 3.11E-3 7.88
33 - - 2.74E-3 | 4.43E-4 7.88 1.51E-4 8
65 - - 6.86E-4 | 3.67E-5 7.92 1.05E-6 8
129 - - 1.72E-4 | 2.56E-6 7.92 3.10E-9 8
257 - - 430E-5 | 8.24E-8 7.97 6.80E-12 8
P16
17 - - 1.64E-2 | 4.34E-3 11.31 3.44E-3 11.75
33 - - 425E-3 | 4.21E-4 15.62 4.85E-5 16
65 - - 1.07E-3 | 3.67E-5 15.69 5.92E-8 16
129 - - 2.69E-4 | 2.56E-6 15.80 4.21E-12 16
257 - - 6.71E-5 | 8.24E-8 15.91 2.18E-16 16

approximation errors when compared to the other approaches. The requirements of data
boundedness in the DBI method are restrictive compared to the positivity requirements
in PPL These restrictions lead to lower average polynomial degrees for DBI compared to
PPI, as shown in the sixth and eighth columns in Tables and In the case of the
uniform mesh, as the average degree used by DBI increases the L?-errors remain the same.
The approximation error using the DBI method does not improve as the average degree
increases because the global error is dominated by the local error of those subintervals with

low degree interpolants. The polynomial degree of the interpolants used for these intervals
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Table 5.4: L2-errors when using the PCHIP, MQS, SPS, DBI, and PPI methods to approximate
the Runge function fi(x) = H;W’ x € [—1,1]. The parameters €y and €; are set to
0.01 and 1.0, respectively. Nj; represents the number of input points used to build the
approximation. P; represents the use of polynomials of degree j, with j being the target
degree for each interval. The sixth and eight columns show the average polynomial degree
used for the DBI and PPI methods, respectively. The interval [-1,1] is divided into (N; — 1)/
and j + 1 LGL quadrature points are used in each element.

N; | PCHIP MQS SPS DBI PPI
L%-error | L*-error | L%-error | L?-error avg. deg. | L?-error avg. deg.
P
17 - - - 2.16E-2 1 2.16E-2 1
33 - - - 6.02E-3 1 6.02E-3 1
65 - - - 1.52E-3 1 1.52E-3 1
129 - - - 3.82E-4 1 3.82E-4 1
257 - - - 9.56E-5 1 9.56E-5 1
Ps Ps Py
17 | 1.02E-2 | 6.29E-3 | 9.73E-3 | 8.63E-3 4 8.39E-3 4
33 | 1.86E-3 | 9.13E-4 | 1.63E-3 | 7.95E-4 4 7.80E-4 4
65 | 3.68E-4 | 847E-5 | 2.24E-4 | 4.76E-5 3.98 4.64E-5 4
129 | 7.20E-5 | 6.23E-6 | 6.03E-5 | 1.49E-6 3.98 1.27E-6 4
257 | 1.52E-5 | 5.72E-7 | 1.48E-5 | 4.68E-8 4 3.95E-8 4
Ps
17 - - 8.44E-3 | 3.49E-3 8.00 4.40E-3 8
33 - - 2.69E-3 | 1.76E-4 7.88 1.76E-4 8
65 - - 7.59E-4 | 3.25E-6 7.92 3.01E-6 8
129 - - 2.61E-4 | 5.64E-8 7.94 8.82E-9 8
257 - - 6.85E-5 | 3.51E-9 7.96 3.96E-11 8
P16
17 - - 2.29E-2 | 9.12E-3 12.19 1.25E-2 12.62
33 - - 3.26E-3 | 5.87E-5 15.28 5.86E-5 16
65 - - 1.11E-3 | 141E-7 15.62 1.17E-7 16
129 - - 3.12E-4 | 3.52E-9 15.90 4.44E-11 16
257 - - 1.08E-4 | 1.56E-10 15.91 2.88E-15 16

remains the same as the average polynomial degree of the interpolant increases elsewhere.
The PPI methods uses higher order interpolants compared to the SPS, DBI, PCHIP, and MQS
methods in both the uniform and LGL meshes. The uniform mesh leads to slightly more
accurate results than the LGL mesh. These results show that the PPI method is a suitable
approach for interpolating data from one mesh to another in cases where the underlying

function is similar to the Runge function.
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5.5.2 Example II f,(x)
The second example uses the analytic approximation of the Heaviside function defined
in Equationwith €p = 0.01, 1 = 1 and st = 2. As mentioned in Section 3.2, this function,
f2(x), is challenging because of the sharp gradient around x = 0. For polynomial degree

five or less, the results from Tables 5.5/ and [5.6| suggest that the MQS method leads to

Table 5.5: L2-errors when using the PCHIP, MQS, SPS, DBI, and PPI methods to approximate
the function f>(x) = Helw, k =100, and x € [—0.2,0.2]. The parameters €j and €; are
set to 0.01 and 1.0, respectively. N; represents the number of input points used to build the
approximation. P; represents the use of polynomials of degree j, with j being the target
degree for each interval. The sixth and eighth columns show the average polynomial degree
used for the DBI and PPI methods, respectively. The input points are uniformly distributed
over the interval [—1,1].

N; | PCHIP MQS SPS DBI PPI
L%-error | L%-error | L?-error | L%-error avg. deg. L2%-error avg. deg.
Py
17 - - - 2.89E-2 1 2.89E-2 1
33 - - - 7.69E-3 1 7.69E-3 1
65 - - - 1.80E-3 1 1.80E-3 1
129 - - - 4 58E-4 1 4.58E-4 1
257 - - - 1.15E-4 1 1.15E-4 1
P3 Ps Py

17 | 2.02E-02 | 1.67E-2 | 1.82E-2 | 2.23E-2 2.75 2.23E-2 3.38
33 | 3.38E-03 | 4.16E-3 | 3.72E-3 | 4.09E-3 3.62 4.10E-3 3.72
65 | 3.59E-04 | 2.29E4 | 3.40E-4 | 3.05E-4 3.86 3.05E-4 3.86
129 | 4.21E-05 | 7.48E-6 | 5.36E-5 | 1.35E-5 3.88 1.35E-5 3.88
257 | 5.12E-06 | 2.16E-7 | 1.27E-5 | 4.71E-7 3.85 4.71E-7 3.86

Ps
17 - - 3.75E-3 | 2.08E-2 3.25 2.08E-2 5.50
33 - - 5.24E-3 | 3.36E-3 3.88 3.33E-3 5.72
65 - - 8.71E-4 1.38E-4 7.59 1.38E-4 7.59
129 - - 2.08E-4 | 1.22E-6 7.68 1.22E-6 7.73
257 - - 5.17E-5 | 4.44E-9 7.61 4.44E-9 7.67
P16
17 - - 5.90E-3 | 2.00E-2 4.25 2.00E-2 6.62
33 - - 6.34E-3 | 2.93E-3 4.38 291E-3 9.72
65 - - 1.30E-3 | 9.17E-5 14.64 9.17E-5 14.86
129 - - 3.23E-4 | 1.70E-7 15.15 1.70E-7 15.41
257 - - 8.08E-5 | 2.64E-11 15.05 2.64E-11 15.30

slighter better approximations than DBI and PPI for f,(x). Overall, the results from Tables
and indicate that the DBI and PPI methods have smaller L?-errors compared to the

other methods. Approximating f»(x) from data on a uniform mesh leads to slightly better



106

Table 5.6: L2-errors when using the PCHIP, MQS, SPS, DBI, and PPI methods to approximate
the function f(x) = 1+e+2""’ k =100, and x € [—0.2,0.2]. The parameters € and €; are
set to 0.01 and 1.0, respectively. N; represents the number of input points used to build the
approximation. P; represents the use of polynomials of degree j, with j being the target
degree for each interval. The sixth and eighth columns show the average polynomial degree
used for the DBI and PPI methods, respectively. The interval [—0.2,0.2] is divided into
(N; —1)/j elements and j + 1 LGL quadrature points are used in each element.

N; | PCHIP MQS SPS DBI PPI
L%-error | L*-error | L%-error | L?-error avg. deg. | L?-error avg. deg.
P
17 - - - 2.89E-2 1 2.89E-2 1
33 - - - 7.69E-3 1 7.69E-3 1
65 - - - 1.80E-3 1 1.80E-3 1
129 - - - 4.58E-4 1 4.58E-4 1
257 - - - 1.15E-4 1 1.15E-4 1
Ps Ps Py

17 | 8.60E-3 | 7.38E-3 | 7.15E-3 | 1.26E-2 2.88 1.25E-2 3.44
33 | 2.50E-3 | 2.50E-3 | 8.04E-4 | 3.11E-3 3.03 2.83E-3 3.44
65 | 6.36E-4 | 211E4 | 4.18E-4 | 3.28E-4 3.81 3.72E-4 3.84
129 | 1.02E-4 | 1.01E-5 | 9.07E-5 | 1.55E-5 3.88 1.55E-5 3.88
257 | 1.83E-5 | 2.93E-7 | 1.83E-5 | 6.29E-7 3.85 6.29E-7 3.86

P
17 - - 443E-3 | 4.87E-3 3.50 4.68E-3 5.00
33 - - 2.51E-3 8.71E-4 4.34 7.84E-4 5.75
65 - - 1.00E-3 | 7.57E-5 6.64 1.24E-4 7.28
129 - - 3.65E-4 | 2.17E-6 7.65 2.17E-6 7.73
257 - - 9.11E-5 1.95E-8 7.55 1.95E-8 7.73
P16
17 - - 4.52E-2 | 3.77E-2 3.81 3.73E-2 7.25
33 - - 2.03E-3 | 2.53E-4 5.56 5.23E-4 9.84
65 - - 9.55E-4 | 1.37E-5 10.53 6.95E-5 12.56
129 - - 4.16E-4 | 2.19E-7 15.16 2.19E-7 15.30
257 - - 1.51E-4 | 1.56E-10 14.96 1.56E-10 15.30

results compared to LGL mesh data. For smooth data with a large gradient, these results
indicate that both the DBI and PPI approaches are suitable for interpolating from one mesh

to another.

5.5.3 Example III f3(x)

The third example uses the modified function introduced in Equationwith o = 0.01,
€1 = 1and st = 2. The function f3(x) is particularly challenging because of the discontinuity
at x = —0.5. The results from Tables and show that the L?-errors from the four
interpolation methods have the same order of accuracy. The results from Tables5.7|and
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Table 5.7: L2-errors when using the PCHIP, MQS, SPS, DBI, and PPI methods to approximate
the function f3(x). The parameters €y and e; are set to 0.01 and 1.0, respectively. N;
represents the number of input points used to build the approximation. P; represents the
use of polynomials of degree j, with j being the target degree for each interval. The fifth and
seventh columns show the average polynomial degree used for the DBI and PPI methods,
respectively. The input points are uniformly distributed over the interval [—1, 1].

N; | PCHIP MQS SPS DBI PPI
L%-error | L%-error | L%-error | L?-error avg. deg. L2-error avg. deg.
P1
17 - - - 1.82E-1 1 1.82E-1 1
33 - - - 1.39E-1 1 1.39E-1 1
65 - - - 1.01E-1 1 1.01E-1 1
129 - - - 7.16E-2 1 7.16E-2 1
257 - - - 5.05E-2 1 5.05E-2 1
P3 Ps Py

17 | 1.77E-1 | 1.59E-1 | 2.32E-1 | 1.82E-1 3.62 1.71E-1 3.81
33 | 1.39E-1 | 1.11E-1 | 1.56E-1 | 1.39E-1 3.97 1.29E-1 3.97
65 | 1.03E-1 | 7.90E-2 | 1.09E-1 | 9.38E-2 3.98 9.38E-2 3.98
129 | 7.42E-2 | 5.63E-2 | 7.69E-2 | 6.69E-2 3.99 6.70E-2 3.99

257 | 5.28E-2 | 4.04E-2 | 5.45E-2 | 4.73E-2 4 4.74E-2 4
Ps
17 - - 2.25E-1 | 1.83E-1 6.62 1.70E-1 7.06
33 - - 1.53E-1 | 1.36E-1 7.81 1.31E-1 7.81
65 - - 1.07E-1 | 9.62E-2 7.92 9.65E-2 7.92
129 - - 7.58E-2 | 6.90E-2 7.96 6.93E-2 7.96
257 - - 5.37E-2 | 4.90E-2 7.98 4.92E-2 7.98
P16
17 - - 2.25E-1 | 1.82E-1 12.06 1.66E-1 13.06
33 - - 1.50E-1 | 1.37E-1 14.09 1.33E-1 14.19
65 - - 1.05E-1 | 9.75E-2 15.78 9.81E-2 15.78
129 - - 7.45E-2 | 7.02E-2 15.90 7.07E-2 15.90
257 - - 5.29E-2 | 4.99E-2 15.95 5.03E-2 15.95

show that the L2-errors from the four interpolation methods have the same order. because
around the discontinuity, the methods are as accurate as the other ones, and in smooth
regions the method gives better approximation results than the other approaches. The DBI
and PPI methods give slightly better approximation results compared to the other methods.
The average polynomial degrees for the DBI and PPI approaches show that high-order
polynomials are used. The high-order polynomial suggest that in the smooth regions
away from the discontinuity, the DBI and PPI approaches lead to high-order accuracy.
However, at the discontinuity, the DBI and PPI and other methods struggle to represent

the underlying function. This example shows that both the DBI and PPI methods are
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Table 5.8: L2-errors when using the PCHIP, MQS, SPS, DBI, and PPI methods to approximate
the function f3(x). The parameters €y and e; are set to 0.01 and 1.0, respectively. N;
represents the number of input points used to build the approximation. P; represents
the use of polynomials of degree j, with j being the target degree for each interval. The
sixth and eighth columns show the average polynomial degree used for the DBI and PPI
methods, respectively. The interval [—1,1] is divided into (N; — 1)/j elements and j + 1
LGL quadrature points are used in each element.

N; | PCHIP MQS SPS DBI PPI
L%-error | L*-error | L?-error | L?-error avg. deg. | L%-error avg. deg.
P
17 - - - 1.82E-1 1 1.82E-1 1
33 - - - 1.39E-1 1 1.39E-1 1
65 - - - 1.01E-1 1 1.01E-1 1
129 - - - 7.16E-2 1 7.16E-2 1
257 - - - 5.05E-2 1 5.05E-2 1
P Ps Py

17 | 1.64E-1 | 1.39E-1 | 1.87E-1 | 1.61E-1 3.81 1.58E-1 3.81
33 | 1.20E-1 | 9.79E-2 | 1.29E-1 | 1.18E-1 3.97 1.18E-1 3.97
65 | 8.70E-2 | 6.94E-2 | 9.04E-2 | 8.32E-2 3.98 8.53E-2 3.98
129 | 6.21E-2 | 496E-2 | 6.39E-2 | 5.93E-2 3.99 6.08E-2 3.99

257 | 4.39E-2 | 3.58E-2 | 454E-2 | 4.19E-2 4.00 4.29E-2 4
P
17 - - 2.84E-1 | 1.85E-1 7.38 1.81E-01 7.50
33 - - 9.61E-2 | 9.38E-2 7.62 1.27E-01 7.66
65 - - 6.79E-2 | 6.75E-2 7.92 9.33E-02 7.92
129 - - 4.82E-2 | 4.79E-2 7.96 6.72E-02 7.96
257 - - 3.44E-2 | 3.37E-2 7.98 4.77E-02 7.98
P16
17 - - 1.11E-1 | 1.08E-1 11.62 1.51E-1 12.12
33 - - 1.86E-1 | 1.66E-1 14.31 1.55E-1 14.88
65 - - 491E-2 | 5.06E-2 15.56 8.28E-2 15.58
129 - - 3.51E-2 | 3.56E-2 15.90 5.92E-2 15.90
257 - - 2.53E-2 | 2.48E-2 15.94 4.19E-2 15.94

appropriate approaches for interpolating from one mesh to another,

5.5.4 Example IV f;(x)

The fourth example uses the function f4(x) defined in Equation 5.4 with ey = 0.01,
€1 = land st = 2. f4(x) depends on the size & of each element, and as the number of
element changes, so does the element size & and the function f4(x).

At the element boundaries f4(x) is only C-continuous with large gradients of opposite
signs. The results from Tables[5.9/and 5.10|show that all the methods struggle to approximate

the underlying function. With the exception of using a uniform mesh with PCHIP and
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Table 5.9: L2-errors when using the PCHIP, MQS, SPS, DBI, and PPI methods to approximate
the Runge function f4(x). The parameters €y and e; are set to 0.01 and 1.0, respectively. N;
represents the number of input points used to build the approximation. P; represents the
use of polynomials of degree j, with j being the target degree for each interval. The value
ne represents the number of elements. The seventh and ninth columns show the average
polynomial degree used for the DBI and PPI methods, respectively. The input points are

uniformly distributed over the interval [0, 1].

N; | PCHIP MQS P, SPS DBI PPI
L?-error | L-error L*-error | L*-error avg. deg. | L?-error avg. deg.

ne =4

17 | 3.74E-01 | 3.95E-1 | Py | 3.72E-1 | 3.49E-1 2.62 3.49E-1 2.88

33 | 247E-01 | 2.59E-1 | Pg | 2.46E-1 | 2.19E-1 5.19 2.19E-1 6.19

65 | 1.55B-01 | 1.63E-1 | Py | 1.54E-1 | 1.32E-1 13.34 1.32E-1 15.34
ne =8

33 | 3.84E-01 | 3.94E-1 | P, | 3.83E-1 | 4.04E-1 2.69 4.04E-1 2.94

65 | 2.54E-01 | 2.59E-1 | Pg | 2.52E-1 | 2.60E-1 5.34 2.74E-1 6.34

129 | 1.61E-01 | 8.23E-2 | P16 | 1.57E-1 | 1.67E-1 13.55 1.78E-1 15.30
ne =16

65 | 3.90E-01 | 3.93E-1 | Py | 3.89E-1 | 3.61E-1 2.72 3.61E-1 297

129 | 2.58E-01 | 2.58E-1 | Pg | 2.55E-1 | 2.26E-1 5.42 2.26E-1 6.42

257 | 1.63E-01 | 8.06E-2 | Py | 1.58E-1 | 1.36E-1 13.65 1.36E-1 15.65

Table 5.10: L?-errors when using the PCHIP, MQS, SPS, DBI, and PPI methods to approxi-
mate the Runge function f4(x). The parameters € and €; are set to 0.01 and 1.0, respectively.
N; represents the number of input points used to build the approximation. P; represents the
use of polynomials of degree j, with j being the target degree for each interval. The value
ne represents the number of elements. The seventh and ninth columns show the average
polynomial degree used for the DBI and PPI methods respectively. The interval [0,1] is
divided into (N; — 1) /j elements and j + 1 LGL quadrature points are used in each element.

N; | PCHIP MQS P; SPS DBI PPI
L*-error | L?-error L%-error | L*>-error avg. deg. | L>-error avg. deg.

ne =4

17 | 3.02E-1 | 3.18E-1 | Py | 3.02E-1 | 2.32E-1 2.75 2.32E-1 3.00

33 | 1.33E-1 | 1.39E-1 | Pg | 1.33E-1 | 9.60E-2 5.25 9.60E-2 6.25

65 | 3.80E-2 | 3.92E-2 | Pis | 3.77E-2 | 2.11E-2 11.88 2.11E-2 13.31
ne =8

33 | 3.10E-1 | 317E-1 | P4 | 3.10E-1 | 3.42E-1 2.75 3.42E-1 3.00

65 | 1.37E-1 | 1.39E-1 | Pg | 1.36E-1 | 1.59E-1 5.25 1.65E-1 6.12

129 | 3.98E-2 | 3.72E-2 | Py | 3.87E-2 | 5.33E-2 11.88 5.60E-2 13.31
ne =16

65 | 3.14E-1 | 3.16E-1 | P4 | 3.14E-1 | 2.32E-1 2.75 2.32E-1 3.00

129 | 1.39E-1 | 1.38E-1 | Ps | 1.37E-1 | 9.60E-2 5.25 9.60E-2 6.25

257 | 4.07E-2 | 3.37E-2 | Pis | 3.90E-2 | 2.11E-2 11.88 2.11E-2 13.31
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SPS, the remaining results from Tables |5.9|and show that all the methods have the
same order of accuracy for both uniform and LGL meshes. The PPI and DBI methods give

slightly smaller L2-errors compared to the other approaches.

5.5.5 Example V f5(x)

The fifth experiment uses the function f5(x) defined in Equation |5.5| with ey = 0.01,
€1 = 1, and st = 1. f5(x) depends on the size h of each element, and as the number
of elements changes, so does the element size h and f5(x). Similarly to fa(x), f5(x) is
only C%-continuous at the element boundaries. However, the gradients remain positive
over the entire interval. This example is constructed to reflect the C%-continuity observed
in the spectral element method used in NEPTUNE. Tables and show that the
approximation errors from PCHIP, MQS, and SPS methods improve slowly compared to
the DBI and PPI methods, as we increase the polynomial degree and the number of points.
The PCHIP, SPS, and MQS methods use approximations of the first derivatives and enforce
C!-continuity at the element boundaries. Overall, the results from Tables and show

that the DBI and PPI methods has smaller L?-errors compared to the remaining methods.

Table 5.11: L2-errors when using the PCHIP, MQS, SPS, DBI, and PPI methods to approx-
imate the function f5(x). The parameters €y and € are set to 0.01 and 1.0, respectively.
N; represents the number of input points used to build the approximation. P; represents
the use of polynomials of degree j, with j being the target degree for each interval. The
value ne is the number of elements used. The seventh and ninth columns show the average
polynomial degree used for the DBI and PPI methods, respectively. The input points are
uniformly distributed over the interval [—2,0].

N; | PCHIP | MQS P; SPS DBI PPI

L*-error | L%-error L*-error | L*-error avg. deg. | L?-error avg. deg.
ne =4
17 | 1.68E-2 | 450E-2 | Py, | 1.23E-2 | 2.36E-2 3.56 2.36E-2 3.56
33 | 995E-3 | 6.04E-3 | Pg | 1.36E-2 | 4.20E-4 7.59 4.20E-4 7.62
65 | 1.67E-3 | 3.82E-4 | Py | 5.77E-3 | 3.65E-5 14.98 3.65E-5 14.98
ne =38
33 | 1.99E-2 | 1.20E-2 | Py | 1.29E-2 | 1.65E-2 3.91 1.65E-2 391
65 | 3.35E-3 | 7.63E-4 | Pg | 7.42E-3 | 2.17E-4 7.67 2.17E-4 7.67
129 | 3.70E-4 | 4.44E-5 | Py | 2.89E-3 | 5.01E-5 14.84 5.01E-5 14.88
ne =16
33 | 6.73E-3 | 246E-3 | P, | 457E-3 | 1.18E-3 3.86 1.18E-3 3.86
65 | 8.22E-4 | 453E-4 | Pg | 3.61E-3 | 527E-5 7.51 5.27E-5 7.51
256 | 1.53e-4 | 1.59E-4 | Pip | 1.42E-3 | 4.27E-11 14.65 4.27E-11 14.70




111

Table 5.12: L2-errors when using the PCHIP, MQS, SPS, DBI, and PPI methods to approxi-
mate the function f5(x). The parameters €y and € are set to 0.01 and 1.0, respectively. N;
represents the number of input points used to build the approximation. P; represents the
use of polynomials of degree j, with j being the target degree for each interval. The value
of ne is the number of elements used. The seventh and ninth columns show the average
polynomial degree used for the DBI and PPI methods, respectively. The interval [—2,0] is
divided into (N; — 1) /j elements and j + 1 LGL quadrature points are used in each element.
N; | PCHIP | MQS P; SPS DBI PPI

L*-error | L%-error L*-error | L*-error avg. deg. | L?-error avg. deg.
ne =4
17 | 4.64E-2 | 3.10E-2 | P4 | 1.23E-2 | 5.09E-2 3.06 5.09E-2 3.06
33 | 743E-3 | 429E-3 | Pg | 1.36E-2 | 1.47E-3 6.34 1.47E-3 6.44
65 | 9.48E-4 | 1.58E-4 | Pis | 5.77E-3 | 3.15E-6 14.83 3.15E-6 14.84
ne =38
33 | 257E-2 | 945E-3 | Py | 1.29E-2 | 1.52E-2 3.84 1.52E-2 3.84
65 | 3.18E-3 | 9.15E-4 | Pg | 7.42E-3 | 2.66E-4 7.66 2.66E-4 7.67
129 | 4.08E-4 | 2.71E-5 | Py | 2.89E-3 | 3.75E-4 14.88 4.53E-4 14.88
ne =16
33 | 8.03E-3 | 3.77E-3 | Py | 457E-3 | 191E-3 3.81 1.91E-3 3.81
65 | 993E-4 | 222E-4 | Pg | 3.61E-3 | 2.23E-6 7.51 2.23E-6 7.51
256 | 1.23E-4 | 3.30E-5 | Pig | 1.42E-3 | 2.63E-12 14.37 2.63E-12 14.50

5.5.6 Example VII f7(x)
This example uses an extended version of the 1D Runge function defined in Equation

from Section to a 2D function.

1
f7(x,y) - 1+25(x2—|—y2)'

x,y € [-1,1] (5.7)

For the DBI and PPI algorithm, 9 = 0.01, €; = 1 and st = 2. The results from Tablesm
and show that the DBI and PPI methods give smaller approximation errors compared
to the PCHIP and SPS methods. In this case, the DBI and PPI methods use higher order
polynomial interpolants for each interval. These higher order interpolants help improve

the approximation compared to the PCHIP and SPS.

5.5.7 Example VIII fg(x)
This example uses a 2D function that is used to study positive and monotonic splines

[11,58,183]. The function is defined as follows:



112

Table 5.13: L? — errors when approximating f7(x,y) with N; x N; points. The parameters
€0 and € are set to 0.01 and 1.0, respectively. N; represents the number of input points
used in each dimension to build the approximation. P; represents the use of polynomials of
degree j, with j being the target degree. The fourth and sixth columns show the average
polynomial degree used for the DBI and PPI methods, respectively. The mesh points are
uniformly distributed on each dimension.

N; | PCHIP SPS DBI PPI
L2-error | L%-error | L%-error avg. deg. L2-error avg. deg.
Py
17 - - 1.60E-2 1 1.60E-2 1
33 - - 4.42E-3 1 4.42E-3 1
65 - - 1.12E-3 1 1.12E-3 1
129 - - 2.82E-4 1 2.82E-4 1
257 - - 7.06E-5 1 7.06E-5 1
P3 Py
17 | 5.01E-3 | 3.61E-3 | 5.16E-3 3.97 4.28E-3 4
33 | 1.23E-3 | 5.44E-4 | 351E-4 3.98 3.31E-4 4
65 | 2.33E-4 | 1.23E-4 | 2.55E-5 3.98 1.31E-5 4
129 | 4.27E-5 | 3.07E-5 | 1.20E-6 3.99 4.36E-7 4
257 | 7.72E-6 | 3.34E-6 | 4.96E-8 4 1.39E-8 4
Py
17 - 8.55E-3 | 3.19E-3 7.75 1.84E-3 7.99
33 - 1.99E-3 | 2.78E-4 7.82 7.86E-5 8
65 - 497E-4 | 2.31E-5 7.90 5.14E-7 8
129 - 1.25E-4 | 1.13E-6 7.95 1.49E-9 8
257 - 3.16E-5 | 4.78E-8 7.98 3.25E-12 8
P16
17 - 1.19E-2 | 3.49E-3 13.15 2.83E-3 14.26
33 - 3.10E-3 | 2.74E-4 15.43 2.68E-5 16
65 - 7.82E-4 | 2.30E-5 15.69 2.63E-8 16
129 - 1.96E-4 | 1.13E-6 15.84 1.77E-12 16
257 - 493E-5 | 4.76E-8 15.92 1.89E-15 16
2(y —x) if0<y—x<05
1 ify—x>0.5
f8<x/y) = 1 (5.8)

cos (471\/(3( — 152+ (y — 0.5)2> if (x —1.5)24 (y—0.5)> <
0 otherwise

For the DBI and PPI algorithm, €y = 0.01, €; = 1 and st = 2. As in Example V, the function
fs(x) is CO-continuous and the underlying mesh used for the approximations does not
capture the sharp corners. The L2-errors from the DBI and PPI methods are dominated by

the local errors of the intervals with C%-continuity and low-degree polynomial interpolants.

Tables and show that the L2-errors from the three methods have the same order,
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Table 5.14: L? — errors when approximating f7(x,y) with N; x N; points. The parameters
€0 and € are set to 0.01 and 1.0, respectively. N; represents the number of input points
used in each dimension to build the approximation. P; represents the use of polynomials of
degree j, with j being the target degree. The fourth and sixth columns show the average
polynomial degree used for the DBI and PPI methods, respectively. For each dimension,
the interval [—1, 1] is divided into (N; — 1)/j elements and j + 1 LGL quadrature points are
used in each element.

N; | PCHIP SPS DBI PPI
L%-error | L%-error | L*-error avg. deg. | L*-error avg. deg.
P
17 - - 1.60E-2 1 1.60E-2 1
33 - - 4.42E-3 1 4.42E-3 1
65 - - 1.12E-3 1 1.12E-3 1
129 - - 2.82E-4 1 2.82E-4 1
257 - - 7.11E-5 1 7.11E-5 1
P Py
17 | 6.31E-03 | 5.41E-3 | 5.54E-3 3.97 5.33E-3 4
33 | 415E-04 | 1.05E-3 | 4.59E-4 3.98 4.53E-4 4
65 | 1.07E-04 | 1.61E-4 | 2.67E-5 3.98 2.54E-5 4
129 | 2.46E-05 | 431E-5 | 7.97E-7 3.99 6.86E-7 4
257 | 5.20E-06 | 1.12E-5 | 2.79E-8 4.00 2.15E-8 4
Ps
17 - 5.89E-3 | 3.02E-3 7.75 2.81E-3 7.99
33 - 1.72E-3 | 9.41E-5 7.82 9.34E-5 8
65 - 5.44E-4 | 1.78E-6 7.90 1.51E-6 8
129 - 1.90E-4 | 4.31E-8 7.95 4.53E-9 8
257 - 491E-5 | 1.73E-9 7.98 1.87E-11 8
P16
17 - 1.88E-2 | 6.31E-3 13.15 8.93E-3 14.26
33 - 2.11E-3 | 2.93E-5 15.43 2.91E-5 16
65 - 6.96E-4 | 8.12E-7 15.69 5.41E-8 16
129 - 2.25E-4 | 2.27E-8 15.84 1.97E-11 16
257 - 7.93E-5 | 9.21E-10 15.92 7.22E-15 16

with DBI and PPI having slightly smaller errors than the other approaches. In the cases
where the underlying function is CY, the results from DBI and PPI are comparable to the
other approaches. Furthermore, the results from DBI and PPI can be improved by using

a mesh that captures C°-continuity, as is the case with the spectral element methods in

NEPTUNE.

5.5.8 Example IX fo(x)
This example is used herein to study shape-preserving (monotonicity and convexity)

splines [16].
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Table 5.15: L2 — errors when approximating fg(x,y) with N; x N; points. The parameters €,
and €; are set to 0.01 and 1.0, respectively. N; represents the number of input points used in
each dimension to build the approximation. P; represents the use of polynomials of degree j,
with j being the target degree. The fourth and sixth columns show the average polynomial
degree used for the DBI and PPI methods, respectively. The points are uniformly distributed
in each dimension.

N; | PCHIP SPS DBI PPI
L%-error | L%-error | L%-error avg. deg. L2-error avg. deg.
P1
17 - - 2.70E-2 1 2.70E-2 1
33 - - 9.51E-3 1 9.51E-3 1
65 - - 3.40E-3 1 3.40E-3 1
129 - - 1.20E-3 1 1.20E-3 1
257 - - 4.30E-4 1 4.30E-4 1
Ps Py

17 | 191E-2 | 1.87E-2 | 1.77E-2 2.04 1.73E-2 2.06
33 | 6.92E-3 | 6.11E-3 | 6.22E-3 1.93 6.21E-3 1.95
65 | 247E-3 | 2.69E-3 | 2.24E-3 1.89 2.24E-3 1.90
129 | 8.99E-4 | 7.71E-4 | 8.17E-4 1.88 8.16E-4 1.88
257 | 3.23E-4 | 2.77E-4 | 2.95E-4 1.87 2.94E-4 1.87

Ps
17 - 1.91E-2 | 1.73E-2 3.19 1.69E-2 3.31
33 - 6.46E-3 | 6.20E-3 3.09 6.19E-3 3.16
65 - 2.24E-3 | 2.21E-3 3.04 2.20E-3 3.09
129 - 8.12E-4 | 7.98E-4 3.03 7.97E-4 3.04
257 - 2.92E-4 | 2.87E-4 3.01 2.87E-4 3.02
Pie
17 - 2.19E-2 | 2.02E-2 4.58 2.34E-2 494
33 - 7.57E-3 | 6.14E-3 5.13 6.17E-3 5.35
65 - 2.68E-3 | 2.25E-3 5.25 2.26E-3 5.38
129 - 9.63E-4 | 8.07E-4 5.29 8.08E-4 5.35
257 - 3.45E-4 | 2.89E-4 5.29 2.89E-4 5.32
fo(x,y) = max <0,sin(7rx)sin(7ry)> x,y€[—1,1] (5.9)

For the DBI and PPI algorithm, ¢g = 0.01, ¢ = 1 and st = 2. The function fo(x,y)
is a C-continuous function. Tables and show L%-errors when approximating
fo(x,y) with the PCHIP, SPS, DBI, and PPI methods. The underlying mesh is such that
the CY-continuities are at the elements boundaries except for P4 and N = 17. The PCHIP
and SPS methods struggle to capture the C’-continuities because both methods enforce
C!-continuity. The L2-error from DBI is dominated by the local error from the intervals with
low-degree interpolants and so as the average polynomial degree increases the L2-errors

do not improve. The L2-error for P and N = 17 is larger compared to the other cases
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Table 5.16: L? — errors when approximating fs(x,y) with N; x N; points. N; represents the
number of input points used in each dimension to build the approximation. P; represents the
use of polynomials of degree j, with j being the target degree. The fourth and sixth columns
show the average polynomial degree used for the DBI and PPI methods, respectively. For
each dimension, the interval [—1,1] is divided into (N; — 1)/j elements and j + 1 LGL
quadrature points are used in each element.

N; | PCHIP DBI PPI
L%-error | L%-error | L%-error avg. deg. L2-error avg. deg.
P1
17 - - 2.70E-2 1 2.70E-2 1
33 - - 9.51E-3 1 9.51E-3 1
65 - - 3.40E-3 1 3.40E-3 1
129 - - 1.20E-3 1 1.20E-3 1
257 - - 4.30E-4 1 4.30E-4 1
Ps Py

17 | 1.91E-2 | 2.55E-2 | 2.18E-2 2.04 2.17E-2 2.06
33 | 6.92E-3 | 5.76E-3 | 7.22E-3 1.93 7.18E-3 1.95
65 | 247E-3 | 2.11E-3 | 2.74E-3 1.89 2.72E-3 1.90
129 | 8.99E-4 | 8.08E-4 | 9.93E-4 1.88 9.87E-4 1.88
257 | 3.23E-4 | 292E4 | 3.61E-4 1.87 3.59E-4 1.87

Ps
17 - 4.06E-2 | 3.42E-2 3.19 3.19E-2 3.31
33 - 9.69E-3 | 8.68E-3 3.09 8.67E-3 3.16
65 - 2.46E-3 | 2.76E-3 3.04 2.82E-3 3.09
129 - 9.83E-4 | 1.09E-3 3.03 1.12E-3 3.04
257 - 3.63E-4 | 3.85E-4 3.01 3.99E-4 3.02
P16
17 - 4.36E-2 | 3.35E-2 4.58 2.81E-2 4.94
33 - 1.53E-2 | 1.06E-2 5.13 1.06E-2 5.35
65 - 4.31E-3 | 3.42E-3 5.25 3.46E-3 5.38
129 - 1.13E-3 | 9.84E-4 5.29 1.29E-3 5.35
257 - 4.38E-4 | 3.95E-4 5.29 5.07E-4 5.32

when the PPI method is used. For Pjs and N = 17, there is no mesh point at the points of
CO—continuity, and so the L2-error is dominated by the local error from those intervals where
low degree interpolants are used. Overall, the results from Tables and demonstrate
that the DBI and PPI methods lead to smaller approximation errors than the PCHIP and
SPS methods.

5.5.9 Example X fio(x)
This example uses a 2D extension of the 1D approximation of the Heaviside function

f2(x) defined in Equation 5.2} which is defined as follows:
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Table 5.17: L2 — errors when approximating fo(x,y) with N; x N; points. The parameters €,
and €; are set to 0.01 and 1.0, respectively. N; represents the number of input points used in
each dimension to build the approximation. P; represents the use of polynomials of degree j,
with j being the target degree. The fourth and sixth columns show the average polynomial
degree used for the DBI and PPI methods, respectively. The points are uniformly distributed
on each dimension.

N; | PCHIP SPS DBI PPI
L2-error | L2-error | L%-error avg. deg. L2-error avg. deg.
Py
17 - - 5.80E-2 1 5.80E-2 1
33 - - 1.88E-2 1 1.88E-2 1
65 - - 6.27E-3 1 6.27E-3 1
129 - — 2.17E-3 1 2.17E-3 1
257 - - 7.87E-4 1 7.87E-4 1
Ps Py

17 | 191E-2 | 1.80E-2 | 1.20E-2 2.56 1.20E-2 2.66
33 | 6.77E-3 | 6.21E-3 | 4.25E-3 2.53 4.25E-3 2.58
65 | 2.39E-3 | 2.18E-3 | 1.50E-3 2.52 1.50E-3 2.54
129 | 8.47E-4 | 7.70E-4 | 5.30E-4 2.51 5.30E-4 2.52
257 | 3.01E-4 | 2.74E-4 | 1.88E-4 2.50 1.88E-4 2.51

Ps
17 - 147E-2 | 1.27E-2 4.22 1.27E-2 4.72
33 - 4.57E-3 | 4.48E-3 4.37 4 .48E-3 4.61
65 - 1.51E-4 | 1.58E-3 4.44 1.58E-3 4.56
129 - 5.16E-4 | 5.60E-4 4.47 5.60E-4 4.53
257 - 1.84E-4 | 1.98E-4 4.48 1.98E-4 4.51
Pie
17 - 1.50E-2 | 2.22E-2 5.92 2.74E-2 7.11
33 - 4.03E-3 | 4.79E-3 8.05 4.79E-3 8.67
65 - 1.15E-3 | 1.69E-3 8.28 1.69E-3 8.58
129 - 3.50E-4 | 5.98E-4 8.39 5.98E-4 8.54
257 - 1.17E-4 | 2.12E4 8.44 2.12E-4 8.52
fio(x,y) = x,y € [—0.2,0.2] (5.10)

For the DBI and PPI algorithm, ey = 0.01, ¢, = 1 and st = 2. The function fio(x,y) is
challenging because of the large gradient at y = —x. Tables and show L2?-errors
when approximating f1o(x) using PCHIP, SPS, DBI, and PPI. As the average polynomial
degree increases, the accuracy of the DBI and PPI methods improves. In this case, the
L%-error is dominated by the local error of the region with the steep gradient. The errors
for the DBI and PPI methods are similar because the stencils used for both methods are
the same in the region with the large gradient. Overall, the results from Tables and
show that the DBI and PPI methods lead to smaller L*-errors compared to the other
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Table 5.18: L? — errors when approximating fo(x,y) with N; x N; points. The parameters
€0 and € are set to 0.01 and 1.0, respectively. N; represents the number of input points
used in each dimension to build the approximation. P; represents the use of polynomials of
degree j, with j being the target degree. The fourth and sixth columns show the average
polynomial degree used for the DBI and PPI methods, respectively. For each dimension,
the interval [—1, 1] is divided into (N; — 1)/j elements and j + 1 LGL quadrature points are
used in each element.

N; | PCHIP SPS DBI PPI
L%-error | L%-error | L?-error avg. deg. | L2-error avg. deg.
P
17 - - 5.80E-2 1 5.80E-2 1
33 - - 1.88E-2 1 1.88E-2 1
65 - - 6.27E-3 1 6.27E-3 1
129 - - 2.17E-3 1 2.17E-3 1
257 - - 7.87E-4 1 7.87E-4 1
Ps Py

17 | 3.56E-02 | 1.05E-2 | 1.85E-2 2.52 1.46E-4 391
33 | 1.79E-03 | 3.61E-3 | 4.74E-3 2.61 4.77E-6 3.95
65 | 2.53E-04 | 1.26E-3 | 1.19E-3 2.62 1.43E-7 3.98
129 | 994E-05 | 4.44E-4 | 2.98E4 2.62 9.16E-9 3.99
257 | 3.26E-05 | 1.61E-4 | 7.45E-5 2.62 5.52E-9 3.99

P
17 - 1.61E-2 | 1.85E-2 4.04 6.01E-8 7.36
33 - 3.34E-3 | 4.74E-3 4.57 1.37E-8 7.89
65 - 8.74E-4 | 1.19E-3 457 9.43E-9 7.95
129 - 240E-4 | 2.98E-4 4.56 6.15E-9 7.97
257 - 7.32E-5 | 7.45E-5 456 3.57E-9 7.99
P16
17 - 2.72E-2 | 1.85E-2 4.29 2.35E-3 8.75
33 - 6.65E-3 | 4.74E-3 7.93 9.88E-9 15.31
65 - 1.33E-3 | 1.19E-3 8.57 6.44E-9 15.88
129 - 3.35E-4 | 2.98E-4 8.54 3.78E-9 15.94
257 - 8.41E-5 | 7.45E-5 8.55 1.75E-9 15.97

methods.

5.6 Discussion and Conclusion
In this chapter, a representative sample of existing methods is compared against our new
approaches on a number of different test functions, including smooth, C%, discontinuous,
and steep functions. The comparison undertaken here focuses on how accurately the
different methods are able to represent this underlying set of test functions. Overall, the DBI
and PPI methods perform well and are suited to the C° continuity of the spectral element

methods in NEPTUNE. The experiments show that the DBI and PPI methods are suitable
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Table 5.19: L? — errors when approximating fio(x,y) with N; x N; points. The parameters
€0 and € are set to 0.01 and 1.0, respectively. N; represents the number of input points
used in each dimension to build the approximation. P; represents the use of polynomials of
degree j, with j being the target degree. The fourth and sixth columns show the average
polynomial degree used for the DBI and PPI methods, respectively. The points are uniformly
distributed on each dimension.

N; | PCHIP SPS DBI PPI
L%-error | L%-error | L?-error avg. deg. L2-error avg. deg.
Py
17 - - 1.50E-2 1 1.50E-2 1
33 - - 4 57E-3 1 4.57E-3 1
65 - - 1.26E-3 1 1.26E-3 1
129 - - 3.23E-4 1 3.23E-4 1
257 - - 8.15E-5 1 8.15E-5 1
P3 Py

17 | 8.07E-3 | 1.99E-3 | 9.45E-3 2.75 9.44E-3 3.23
33 | 1.26E-3 | 2.43E4 | 1.33E-3 3.53 1.29E-3 3.65
65 | 1.44E4 | 492E-5 | 9.29E-5 3.82 9.29E-5 3.82
129 | 1.63E-5 | 1.20E-5 | 3.67E-6 3.81 3.67E-6 3.81
257 | 1.94E-6 | 3.05E-6 | 1.21E-7 3.79 1.21E-7 3.79

Pg
17 - 1.80E-1 8.05E-3 3.15 8.67E-3 5
33 - 1.22E-1 1.03E-3 5.78 9.05E-4 6.55
65 - 8.48E-2 | 4.83E-5 7.54 4.99E-5 7.57
129 - 1.04E-1 2.57E-7 7.53 2.57E-7 7.55
257 - 8.02E-2 | 5.27E-10 7.49 5.27E-10 7.52
P16
17 - 4.72E-3 | 7.39E-3 3.57 1.86E-2 7.45
33 - 1.22E-3 1.02E-3 6.71 2.33E-3 10.23
65 - 3.11E-4 | 2.12E-4 14.76 241E-4 14.94
129 - 7.80E-5 1.03E-6 14.93 1.03E-6 15.05
257 - 1.95E-5 | 4.41E-11 14.83 4.41E-11 14.97

approaches for interpolating smooth functions and C° continuous functions while enforcing

positivity. In detail the summary is that:

e The results in Section 3 Examples I, II, and III show that the improved DBI and new

PPI approaches preserve positivity exactly as the proofs in [82] indicate;

e The results in Section 4 and Sections 5.1, 5.2, and 5.3 show that the DBI and PPI
approaches give much higher levels of accuracy than the DBI method by allowing
the solution to be outside the local bounds while remaining positive. The PPI method

also appears to give better results than the SPS method in line with the studies
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Table 5.20: L? — errors when approximating fio(x,y) with N; x N; points. The parameters
€0 and € are set to 0.01 and 1.0, respectively. N; represents the number of input points
used in each dimension to build the approximation. P; represents the use of polynomials of
degree j, with j being the target degree. The fourth and sixth columns show the average
polynomial degree used for the DBI and PPI methods respectively. For each dimension, the
interval [—0.2,0.2] is divided into (N; — 1) /j elements and j + 1 LGL quadrature points are
used in each element.

N; | PCHIP SPS DBI PPI
L%-error | L?-error | L?-error avg. deg. | L?-error avg. deg.
P
17 - - 1.50E-2 1 1.50E-2 1
33 - - 4.57E-3 1 4.57E-3 1
65 - - 1.26E-3 1 1.26E-3 1
129 - - 3.23E-4 1 3.23E-4 1
257 - - 8.15E-5 1 8.15E-5 1
P Py

17 | 1.32E-2 | 2.79E-3 | 1.12E-2 2.75 1.11E-2 3.23
33 | 2.75E-3 | 3.49E4 | 1.73E-3 3.53 1.68E-3 3.65
65 | 3.57E-4 | 6.87E-5 | 1.28E-4 3.82 1.28E-4 3.82
129 | 4.09E-5 | 1.64E-5 | 5.47E-6 3.81 5.47E-6 3.81
257 | 5.04E-6 | 4.12E-6 | 1.77E-7 3.79 1.77E-7 3.79

Pg
17 - 5.82E-3 1.22E-2 3.15 1.20E-2 5.00
33 - 1.26E-3 1.82E-3 5.78 1.67E-3 6.55
65 - 3.00E-4 | 498E-5 7.54 4.98E-5 7.57
129 - 7.58E-5 | 4.03E-7 7.53 4.03E-7 7.55
257 - 1.90E-5 1.21E-9 7.49 1.21E-9 7.52
P1s
17 - 8.05E-3 1.34E-2 3.57 1.31E-2 7.45
33 - 2.06E-3 | 2.04E-3 6.71 1.92E-3 10.23
65 - 5.14E-4 | 3.81E-5 14.76 3.84E-5 14.94
129 - 1.26E-4 | 6.20E-8 14.93 6.20E-8 15.05
257 - 3.18E-5 | 6.20E-12 14.83 6.20E-12 14.97

in [13]] and [15], which demonstrate that the SPS method does not achieve high-order

accuracy; and

e In the cases when steep gradients or discontinuities force the use of low-order
approximations, the DBI and PPI methods compete against the well-known cubic

spline method PCHIP and the higher order MQS and the SPS spline methods.

Overall, it would seem that when it is possible to use higher order polynomial approxi-
mations the PPI method appears to give levels of accuracy that compete with standard

unmodified high-order spline methods while at the same time preserving positivity.



CHAPTER 6

HPPIS: A HIG-HORDER
POSITIVITY-PRESERVING MAPPING
SOFTWARE FOR STRUCTURED MESHES

6.1 Introduction

This chapter introduces open-source software for high-order data-bounded and positivity-
preserving interpolation (HiPPIS) that addresses the limitations of both the spline and poly-
nomial rescaling methods. HiPPIS uses a given set of data points to construct high-degree
polynomial interpolants that are positive over the domains in which they are defined. The
high-order positive interpolants obtained from HPPIS are suitable for approximating and
mapping physical quantities such as mass, density, and concentration between meshes
while preserving positivity. HiPPIS provides Fortran and Matlab implementations of the
data-bounded and positivity-preserving interpolation methods. Both the Fortran and
Matlab versions are self-contained and are easy to integrate into other application software
requiring positivity. In addition to the software, this chapter provides an analysis of the
mapping error in the context of PDEs, uses several 1D and 2D numerical examples to
demonstrate the benefits and limitations of HPPIS, and introduces different strategies to
improve locality, vectorization, and overall, the performance of HiPPIS.

Mapping data values from one grid to another is a fundamental part of many com-
putational problems. Preserving certain properties such as positivity when interpolating
solution values between meshes is important. In many applications [1,62,87,98,100,110],
failure to preserve the positivity of quantities such as mass, density, and concentration
results in negative values that are unphysical. These negative values may propagate to
other calculations and corrupt other quantities. Many polynomial-based methods have

been developed to address these limitations.
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Positivity-preserving methods based on linear polynomial rescaling are introduced in
[45,60,/62,[110,112]. These polynomial rescaling methods are often used in the context of
hyperbolic PDEs, in numerical weather prediction (NWP) [60], combustion simulation
[45,62], and other applications. These methods introduce rescaling parameters obtained
from quadrature weights that are used to linearly rescale the polynomial to ensure positivity
at the quadrature nodes and conserve mass. These approaches ensure positivity only at
the set of mesh points used for the simulation but do not address the case of mapping data
values between different meshes, which is the focus of HiPPIS.

Other approaches for preserving positivity that are based on splines can be found in
computer-aided design (CAD), graphics, and visualization [33,47,53,[88-90]. Several
positivity- and monotonicity-preserving cubic splines have been developed. A widely used
example of such an approach is the piecewise cubic Hermite interpolation (PCHIP) [33],
which is available as open-source code in [72]. In addition, quartic and quintic spline-based
approaches have been introduced in [41}46|48,64]. These methods impose some restrictions
on the first and second derivatives to ensure monotonicity, positivity, and continuity. For
instance, the monotonic quintic spline (MQS) in [64] uses the sufficient condition from [90]
to check for monotonicity and the approaches in [104] to adjust the values of the first and
second derivatives to ensure monotonicity.

Positivity can also be enforced using ENO-type methods [3,5,82,87], which enforce
data boundedness and positivity by adaptively selecting mesh points to build the stencil
used to construct the positive interpolant for each interval. ENO-type methods use divided
differences to develop a sufficient condition for data boundedness or positivity that is
used to guide the stencil selection process. The software introduced in this work is based
on the high-order ENO-type data-bounded interpolation (DBI) and positivity-preserving
interpolation (PPI) methods in [82]. The work in [82] provides a positivity-preserving
method that uses higher degree polynomials compared to the other ENO-type methods in
[3,587] and the spline-based methods.

The implementations available for positivity preservation are based on splines [33,41]
and polynomial rescaling [60,(110]. The spline-based approaches often require solving
a linear system of equations to ensure continuity, and an optimization problem in the

case of quartic and quintic splines. These spline approaches are often limited to fifth-
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order polynomial and can be computationally expensive in cases where solving a global
optimization problem is required. A full suite of test problems comparing the DBI and
PPI methods against different spline-based methods including PCHIP [33], MQS [64],
and shape-preseving splines (SPS) [14] has been undertaken by the authors in [77]. The
different polynomial rescaling methods allow for polynomial degrees higher than five and
are built as part of larger partial differential equation (PDE) solvers [60,[110]. As previously
mentioned, the polynomial rescaling approaches guarantee positivity only at a given set
of points, not over the entire domain. The present work provides an implementation of a
high-order software (HiPPIS) based on [82] that is high-order and guarantees positivity
over the entire domain where the interpolant is defined. In addition, this work evaluates
the use of HiPPIS in the context of function approximation and mapping between different
meshes. This evaluation provides an analysis of the mapping error in the case of PDEs and
numerical examples demonstrating the benefits and limitations of HiPPIS.

The remaining parts of the paper are organized as follows: Section presents a
background for the mathematical framework required for the DBI and PPI methods. Section
provides the algorithms used to build the software, the descriptions of the different
components HiPPIS, and the techniques used to enable vectorization, increase locality,
and improve overall computational performance. Section [6.4shows 1D and 2D function
approximation examples using the DBI and PPI methods in HiPPIS. Section |6.5(provides
an analysis of the mapping error in the context of time dependent PDEs, and Section|[6.6|
shows examples constructed based on NWP applications. In these examples, the DBI and
PPI methods are used to map solution values between different meshes used in NWP. A

discussion and concluding remarks are presented in Section[6.7}

6.2 Mathematical Framework
This section provides a summary and the theoretical background of both the DBI and
PPI methods.

6.2.1 Adaptive Polynomial Construction
Both the DBI and PPI methods rely on the Newton polynomial [56}103|] representation to
build interpolants that are positive or bounded by the data values. The ability to adaptively

choose stencil points to construct the interpolation, as in ENO methods [39], is the key
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feature employed to develop the data-bounded and positivity-preserving interpolants.

Consider a 1D mesh defined as follows:
M ={xi_p,-- X, Xiy1,- -, XiyL}, (6.1)

where x;_j < -+ < x; < X341 < -+ < Xjpp,and {u;_j, - -+ ,u;p .} is the set of data values
associated with the mesh points. The subscripts J, L, i, € No = N U {0}, and x, u; € R for

i — ] <k <i+ L. The DBI and PPI procedure starts by setting the initial stencil 1y,
Vo = {xi, xipa} = {x4, xp}- (6.2)

The stencil ) is expanded by successively appending a point to the right or left of V; to
form V1. Once the final stencil V;,_; is obtained, the interpolant of degree n defined on

I; = {xj,xi+1} can be written as

Ua(x) = -+ Uleh, xh) () + Ul 2l mi(x) - Ul 2] 1),

(6.3)
where 7 ;(x) = (x — x;), m1i(x) = (x — x;)(x — x{), - - - are the Newton basis functions. x5
is the point added to expand the stencil V;_» to V;_1 and can be explicitly expressed as

X = X,
xi = Xii1, (64)
x]e‘:ijl\ijz, 2§j§1’l—1.

The divided differences are recursively defined as follows:

Ulxi, - xigj] =

U[xi] = U;
ll[xl-ﬂ,---,xiﬂ-]fu[x,-,---,x,-ﬂ-,] (65)

Xipj—Xi

The polynomial U, (x) can be compactly expressed as
Un(x) = ;i + (i1 — i) Su(x). (6.6)

S, (x) is defined as

Su(x) =s (1 + (5;11)A1 <1 + (S;;Z))Q ( . (1 L=t ;nt_nll)A"”) . ) 6.7)

where s, t;, and d]- are expressed as follows:

X—X; X=X

Xi+t1 — X; XS — X6

0<s=

<1, (6.8)
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Xi — X
ti=—— 7, and (6.9)
XH— X
X — ol
0<dj=-1—. (6.10)
Yo~ %o

s and d; are defined such that s € [0,1] and d; > 0. The positivity-preserving and data-

bounded interpolants are obtained by imposing some bounds on A;, defined as

j i j 1 j=0
Aj=TT4 = Ada = TTAe = § ud-

(- .
k=1 k=1 Wﬂizl(x; —xl), 1<j<n-1

(6.11)

6.2.2 Positivity-Preserving and Data-Bounded Interpolation

The DBI and PPI algorithms are constructed by adaptively selecting stencil points and
enforcing the conditions for positivity and data boundedness. Requiring positivity alone can
lead to large oscillations and extrema that degrade the approximation. Positivity alone does
not restrict how much the interpolant is allowed to grow beyond the data values. The large
oscillations can be removed with the DBI and PCHIP methods. However, in the case where
a given interval I; has a hidden extremum, both DBI and PCHIP will truncate the extremum.
As in [3,91], the interval I; has an extremum when two of the three divided differences
oi1 = U[xj_1, x|, 0; = U[x;, xi+1], and 0741 = U[x;, xi11] of neighboring intervals, are of
opposite signs. The constrained PPI algorithm addresses these limitations by allowing the
constructed interpolant to grow beyond the data values but not produce extrema that are
too large.

The positive polynomial interpolant is constrained as follows:
Uin < UP(x) = i + (wit1 — 1i)Su(x) < oz (6.12)
The bounds u,,;;, and u,,,, are defined as

{umin = min(ui, ui—H) - Aminr (6 13)

Umax = max(”i/ ui+1) + Amzzx-
The parameters A, and A,y are chosen according to

A {61 ]mzn (Mi, Mi+1) ‘ if 010141 < Oand ;1 < Oor 0i—10i4+1 = Oand 0;_10; < 0
min =

eo|min (uj, uiy1)| otherwise,
6.14)
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and

A {ellmax(ui,uiﬂ)] ifo;_10;411 <0and o;_1 > 0oro;_10;11 > 0and 0;_10; < 0
max — ‘

eo|max(uj,ui11)| otherwise.

(6.15)
The parameters €y and €1, used for intervals with and without extremum, respectively, are
introduced to adjust A,,;;;, and Ayax. This work extended the bounds in [82] by introducing
the parameter €; to allow for more flexibility on how to bound the interpolants in cases
where an extremum is detected. The choice for the positive parameters ) and €; depends
on the underlying function and the input data used for the approximation. As both €y and
€1 get smaller, the upper and lower bounds get tighter, and the PPI method converges to the
DBI method. The choices for €y and € are further discussed in Section In Equation
, the interval I; has a local maximum if 0;_10;11 < 0 and 0;_; < 0. Correspondingly, in
Equation , the interval [; has a local minimum if ¢;_10;,1 < 0 and ¢;_1 > 0. In both
Equations and , the type of extremum is ambiguous if 0;_10;11, and 0;_10; < 0.
Equation (6.12) is equivalent to bounding S, (x) as follows:

my < Syp(x) < my, (6.16)
where the factors m, and m, are expressed as

1.t ujpq >y

) Upin — Ui Upax — U;
my = min (0, mml), and m, = max (1, maxl) (6.17)
Uil — Ui Ujp1 — U
2.t Ui < U
. Upax — U WUpin — U
my = min <0, maxl), and m, = max (1, mml) (6.18)
Uil — Ui Ujp1 — U

The DBI method can be recovered from the PPI methods by setting m, = 0 and m, = 1. The
positivity-preserving result in Equation (6.12) is obtained by successively imposing bounds
on )_\]- in the quadratic, cubic, and higher order terms in the expression of S, (x) defined in

Equation (6.7). The lower and upper bounds are defined according to

_ = 4. .
B = (Bji1 — A1), iftj € (—o0,0] j>1 (6.19a)
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and
(—41’)14 —+ 1)d1, ] =1

B].+ = (B].t1 - /'\j,l)ld_—/tj, iftj € (—o0,0] j>1 (6.19b)
(B].‘_1 - /'\]-,1)%, ift; € (0,+00) j>1.

B, and B are defined as —d; and d; for the DBl method whereas for the PPI method, they

are defined as (—4(m, — 1) — 1)dy and (—4m, + 1)d;, respectively. We refer the reader to

Theorem 1 and 2 in Chapterdor [82] for more details on the mathematical foundation used

to build the positivity-preserving software.

6.3 Algorithms and Software
This section describes the algorithms and different components used in the data-
bounded and positivity-preserving software. The software developed in this work provides
1D, 2D, and 3D implementations of the DBI and PPI methods for uniform and nonuniform
structured meshes. The 1D implementation is constructed based on the mathematical
framework provided in Section The 2D and 3D implementation are obtained via a

tensor product of the 1D version.

6.3.1 Algorithms

The algorithms provide the necessary elements to construct the data-bounded or positive
interpolants. Rogerson [85] showed that the ENO reconstruction can lead to a left- or
right-biased stencil that causes stability issues when used to solve hyperbolic equations.
Shu [93] addressed this limitation by introducing a bias coefficient used to target a preferred
stencil. As indicated in [82], the left- and right-biased stencil can fail to recover hidden
extrema. For a given interval I;, the left- and right-biased stencil does not include the
points x;_1 or x; 1, respectively. Algorithm I addresses these limitations by extending the
algorithm in [82] by introducing more options for the adaptive stencil selection process
described below. In addition to the symmetry-based points selection in [82], Algorithm I
includes ENO-type and locality-based point selection processes.

At any given step j, the next point inserted into V; can be to the left or right. Let 7\]-;1 and
/_\;jrl correspond to the case where the stencil inserted is to the left and right, respectively.
Let x, and x; be the mesh points immediately to the left and right of 1}, respectively. Given

Vi, let ‘Lt;- be the number of points to the left of x; and ; the number of points to the right.
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{/\]H Aip1 with Vi = {x,} UV 6.20)

/\;_ Aiqr with Vi = ViU {x,}.
Algorithm I extends the algorithm in [82] by introducing a user-supplied parameter st
used to guide the procedure for stencil construction. In the cases where adding both x, (to
the left) or x, (to the right) are valid, the algorithm makes the selection based on the three

cases below.

o Ifst = 1 (default), the algorithm chooses the point with the smallest divided difference,
as in the ENO stencil.

o If st = 2, the point to the left of the current stencil is selected if the number of points
to the left of x; is smaller than the number of points to the right. Similarly, the point
to the right is selected if the number of points to the right of x; is smaller than the
number of points to the left. When the number of points to both the right and left are

the same, the algorithm chooses the point with the smallest A; .

o If st = 3, the algorithm chooses the point that is closest to the starting interval I;. It
is important to prioritize the closest points in cases where the intervals surrounding
I; vary significantly in size. These variations are found in computational problems

where different resolutions are used for different parts of the domain.

Algorithm II describes the 1D DBI and PPI methods built using the mathematical frame-
work in Section and Algorithm I. Algorithm II further extends the constraints in [82]
by introducing the user-supplied positive parameter €; that is used to impose upper and

lower bounds on the interpolants according to Equations (6.14) and (6.15). The positive

parameters €y and €; are used for intervals with and without an extremum, respectively.
The user-supplied parameter im is used to choose between the DBI and PPI methods.
Algorithm I

Input: y}, yﬁ., Xp, Xi, Xg, Xip1, U[Xp, - - - ,x]’.], Ulxt, - xy] AL

i1 )\]H, and st.

1. ifst =1
o if [Ufxy,---, x]rH < |U[x§, -+, Xx4]|, then insert a new stencil point to the left;

o else if [U[xy---,xf]| > \U[xé,- -+, %4]|, then insert a new stencil point to the

right;
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e else insert a new stencil point to the right if |7\j’+1] > |7\].+Jrl |; otherwise, insert a

new point to left;
2. ifst=2
. l . . . .
o if y; < pj, then insert a new stencil point to the left;

o elseif y;. > ;4]7- then insert a new stencil point to the right;

e else insert a new stencil point to the right if |)—L].jr1] > |)_t]trl |; otherwise, insert a

new point to left;
3. elsest =3
o if [x, — x;| < |x; — xj41], then insert a new stencil point to the left;
e elseif [x, — x;| > |x; — x;41], then insert a new stencil point to the right;

e else insert a new stencil point to the right if Mj;l’ > ‘}‘jtrl |; otherwise, insert a

new point to left;

Algorithm II (1D)

Input: {x;}7 o, {u;} o, {%i},, d, st €0, im, and €;. Output: {ii;}7 .
1. Select an interval [x;, x;41]. Let Vo = {x;, x;41} = {x}, x5}

2. If0;_10i11 < 0oro;_10; < 0, then the interval [; has a hidden local extremum. For the
boundary intervals, we assume that the divided differences to the left and right have

the same sign.

3. Compute u,,;,, and ., using Equations (6.13), (6.14), and (6.15).

4. Compute m, and m; based on Equations (6.17) and (6.17) or Equations (4.77) and
(4.77). For DBI, set m, = 1 and m, = 0.

5. Given a stencil V;,

o if By < )_\;jrl < B]-erl and B 1 S /_\]-_+1 < B]-er1, choose the point to add based on
Algorithm I

e elseif By < A . < Bt

i1 < B, then insert a new stencil point to the left;
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£ p— 1+ +
o elseif B <AL < By,

then insert a new stencil point to the right;
6. This process (Steps 3) iterates until the halting criterion that the ratio of divided
differences lies outside the required bounds stated above or the stencil has d + 1

points, with d being the target degree for the interpolant.

7. Evaluate the final interpolant U’ (x) (for DBI) or U?(x) (for PPI) at the output points

%; that are in I;.

8. Repeat Steps 1-7 for each interval in the input 1D mesh.

6.3.2 Software Description

The DBI and PPI software implementation is guided by the algorithms described above.
HiPPIS is available at https://github.com/ouermijudicael/HiPPIS. The software can be
organized into four major parts: 1) computation of of divided differences; 2) calculations of
upper and lower bounds for each interval; 3) a stencil construction procedure; and 4) 1D,
2D, and 3D DBI and PPI implementations.

The divided differences are essential to the DBI and PPI methods because they are
used in the calculations of A; and the stencil selection process. The divided differences are
computed using the standard recurrence form in Equation (6.5) and stored in a table of
dimension n x (d 4+ 1) where d is the maximum polynomial degree for each interpolant.
Given that the maximum degree is d, it is sufficient to consider the d + 1 divided differences
for the stencil selection process and the construction of the final polynomial interpolant for
each interval.

The bounds on each interpolant are obtained from Equation (6.13), (6.14), and
where the positive parameter €p and €; are user-supplied values used to adjust the bounds
in for the interval with and without extremum, respectively. The adjustment focuses on
removing large oscillations as much as possible while still allowing high-degree polynomial
interpolants that meet the positivity requirements.

The stencil selection process requires the computation of B]-Jr and B;", which are both
dependent on dj, tj, and A;. The stencil V; is constructed from V;j_; by appending a point to
the left or right of V;_;. In the cases where both appending to either the right or left meets

the requirements for positivity, the software offer three possible options for choosing from
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both points that can be set by the user. The first and default option (st = 1) chooses the
stencil with the smallest divided difference, similar to the ENO-like approach. The second
option (st = 2) prioritizes the choice that makes the stencil more symmetric around the
point x;. The third option (st = 3) chooses the point closest to the starting interval I;, thus
prioritizing locality.

The 1D DBI and PPI methods use the three options as building blocks to construct
the final approximation. Once the final stencil has been selected, the interpolant is built
using a Newton polynomial representation and then evaluated at the corresponding output
points. The Newton polynomial is used here because its coefficients/divided differences
are available. The 2D and 3D implementations successively use the 1D version along each
dimension to construct the final approximation on uniform and nonuniform structured
meshes.

The interfaces for the 1D, 2D, and 3D DBI and PPI subroutines are designed to be similar
to widely used interfaces for polynomial interpolation such as PCHIP, which makes the

software easy to use and incorporate into larger application codes. The interfaces require

e the input mesh points and the data values associated with those points,
e the maximum polynomial degree to be used for each interpolant,
e the interpolation method to be used (DBI or PPI), and

e the output mesh points.

Listing shows examples of how to use the 1D, 2D, and 3D interfaces for DBI and PPI
in HiPPIS. The variables x, y, and z are 1D arrays used to define the input meshes and
xout, yout, and zout are used to define the output meshes. The variables v, v2D, and v3D
correspond to the input data values associated with the input meshes. The parameters d
and im (1, or 2) are used to indicate the target polynomial degree and the interpolation
method to be used. For DBI and PPI, the parameter im is set to 1 and 2, respectively. The
parameters st, €9, and € are optional parameters that are set to 3, 0.01, and 1 by default,
as explained below. The choice for the optional parameters depends on the underlying
function and the input data.

In problems where different resolutions are used for different parts of the computational

domain, st=3 (default) is a preferable choice. The algorithm prioritizes the closest points to
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starting interval [; if st=3. This choice is particularly important in regions where the size of
the intervals varies significantly. For cases where smoothness is the primary goal, st=1 is a
suitable choice. For st=1, Algorithm I prioritizes smoothness by choosing the points with
the smallest divided differences during the stencil construction process. Both the st=1 and
st=3 can lead to left- or right-biased stencil. In these instances, st=2 can be used to remove
the bias. For st=2, the algorithm prioritizes a symmetric stencil. The default value of st is
set to 3 because the examples in this study indicate that st=3 lead better approximations
compared to st=1, or 2 and locality is often a highly desired property in many computational
problems.

The positive parameters €y and €7 are used to bound the interpolants for the intervals
with and without extrema, respectively. In [82], and [77] the parameters €y and €; are
set to the default values of 0.01 and 1, respectively. The values of €y and €; are chosen
such that the lower and upper bounds on each interpolant are relaxed enough to allow
for a high-order polynomial that does not introduce undesirables oscillations. For profiles
that are prone to oscillation such as the smoothed Heaviside function, it is important to
choose small values for €y and €;. For N x N = 17 x 17, the approximation leads to large
oscillations if €y and € are greater than 10~4. For intervals without extrema, it is important
to keep €p small to not introduce new extrema. For the intervals with extrema, €; needs
to be large enough to allow the recovery of the hidden extrema but small enough to not
cause undesired large oscillations. Choosing the parameter €; is very challenging given
that the size of the peaks are not know a priori. The default value of €; = 1 is such that the
interpolant maximum value is twice max(u;, uy+1). This default value of one is sufficient
for the modified Runge and TWP-ICE examples. However, in the case of BOMEX, smaller
values of €; < 107 are required to remove undesired oscillations. In practice, it is prudent
to start with small values €9 and €1 and increase them as needed if the approximation fails
to recover hidden extrema or uses low-degree polynomial interpolants.

Fig. |6.1|shows a diagram of the different components of the main module of HiPPIS.
The function divdiff(...) is used to calculate the divided differences needed for Algorithms I
and II. Once the final stencil is constructed, the function newtonPolyVal(...) is used to build
and evaluate the positive interpolant at the corresponding output points. The major part

of the data-boundedness and positivity preservation including Algorithms I and Il is in
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HiPPIS
[ adaptivelnterpolation2D(...) ] [ adaptivelnterpolation3D(...) ]
[ adaptivelnterpolation1D(...) ]
[ divdiff(...) ][ newtonPolyVal(...) }

Fig. 6.1: Diagram showing the components of the main module used to build the HiPPIS
software.

the function adaptivelnterpolation1D(...). This function is used for the 1D approximation
or mapping problems and depends on the function divdiff(...) and newtonPolyVal(...). The
functions adaptivelterpolation2D(...) and adaptivelnterpolation3D(...) use adaptivelnterpola-
tion1D(..) to construct the data-bounded or positive polynomial approximations on 2D and
3D structured tensor-product meshes, respectively. The interfaces for the 1D, 2D, and 3D
interpolations, in bold, require the parameter im which is used to indicate the interpolation
method chosen. For the DBI and PPI methods, the parameter im is set using 1 and 2,

respectively. HiPPIS does not allow for any other choices for the parameter im.

Listing 6.1: Interface Examples

% 1D example
vout = adaptivelInterpolationiD(x, v, xout, d, im, st, €, € );

%2D example
vout2D = adaptivelnterpolation2D(x, y, v2D, xout,yout, d, im, st, €, € );

%3D example
vout3D = adaptivelnterpolation3D(x, y, z, v3D, xout, yout, zout, d, im, st, €, € );

6.3.3 Implementation and Performance
This section provides more details on the implementation and different techniques used
to improve the performance of the DBI and PPI methods. HiPPIS is implemented using
Fortran90 and Matlab. The Fortran implementation includes a Makefile and examples that
are used to build an executable. The Makefiles require an Intel compiler with openMP4.
The Makefiles can be modified for other compilers such as gfortran (gnu), HPE Cray, etc.
The Fortran version contains all the examples presented in this manuscript. The Matlab

version only requires the installation of the Matlab software to be able to use HiPPIS. The
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Matlab version does not include the BOMEX example because the DBI and PPI methods
are incorporated into a larger simulation code that is in Fortran.

Vectorizing adaptive algorithms is challenging, especially when the conditions used
for the adaptive decisions are not known a priori. Both the DBI and PPI approaches are
adaptive methods that are not suitable for vectorization and therefore fail to take advantage
of vector units in computational resources. Let “i-loops" be the loops that iterate over
the intervals from the input mesh, and “j-loops" the loops that iterate from one to the
target polynomial degree d. Although ENO methods are adaptive, they can be vectorized
along the “i-loops" and “j-loops" [96]. The vectorization along the “j-loops" are possible
because the values (divided differences) used for the adaptive decisions are known before
entering the loops. This type of vectorization is not suitable for the DBI and PPI methods.
When adding a point to go from V;_; to V}, the point selection depends on the selection
order of previously added points, the conditions for data-boundedness and positivity, and
the user-supplied parameters. These dependencies, which are not known a priori, and
many nested conditionals inside the DBI and PPI algorithms prevent vectorization along
the “j-loops". There are no dependencies between the intervals, which are suitable for
parallelism. As a result, vectorization of the DBI and PPI algorithms along the “i-loops" is
more complex than the approach used for the ENO method in [96]].

Although there are no dependencies between the intervals, the dependencies along the
“j-loops", and complex control flows remain. The implementation enables vectorization
by structuring the code such that the “j-loops" and “i-loops" are the outer and inner loops
respectively, by removing the complex control flows used, by introducing local variables to
reduce decencies inside each loop, and by placing the OpenMP directive OMP SIMD before
the “i-loops". Similar ideas for code restructuring are introduced in [79,80] in the context of
vectorizing complex numerical weather prediction codes.

Listings|6.2|and [6.3|show a unvectorized and vectorized pseudocode to highlight the
transformations used to enable vectorization. In Listing [6.3|the computed values of msk1,
msk2, msk3, and msk4 encapsulate the conditionals in lines 4, 5, 8, 12, and 15 of Listing
The values of msk1, msk2, msk3, msk4, msk5, and mské6 are set to ones if the conditions in lines
5,9, 14, 18, 23, and 24 of Listing are met; otherwise, the values are set to zeros. msk5

and msko6 are used to indicate the final choices based on conditionals that are encapsulated
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in precomputed values of msk1, msk2, msk3, and msk4. For a given index i, let us consider
the case where the conditions in lines 4, and 5 of Listing[6.2] are met and left(i) = left(i)-1. In
this case, msk1(i)=msk5(i)=1 and msk2(i)=msk3(i)=msk5(i)=msk6(i)=0. Line 28 of Listing[6.3]

becomes left(i) = mskb(i)*(left(i)-1) = left(i)-1, and the other evaluations collapse to zero.

Listing 6.2: Unvectorized pseu-
docode example

do i=1,n-1
do j=1, degree

if ( cdtl_unvec .and.
cdt2_unvec)
if (|ul_unvec| < |ur_unvec
1)
left_unvec = left_unvec
-1

else
right_unvec =
right_unvec + 1
endif
elseif (cdt2_unvec )

Listing 6.3: Vectorized pseudocode example

do j=1, degree

1$OMP SIMD
do i=1, n-1
msk1(i) = (cdt1(i) .and. cdt2(i) .and. |ull
< lurl)
enddo
1$OMP SIMD
do i=1, n-1
msk2(i) = (cdt1(i) .and. cdt2(i) .and. &
Jul (i) | >= |ur(i)| .and. msk1(i)
==0)
enddo
1$OMP SIMD
do i=1, n-1
msk3(i) = (cdt2(i) .and. msk1(i)==0 .and.
msk2 (i) ==0)
enddo
1$OMP SIMD
do i=1, n-1
msk4 (i) = (cdt1(i) .and. msk1==0(i) .and. &
msk2==0(i) .and. msk3(i)==0)
enddo
1$OMP SIMD

right_unvec = do i=1, n-1

right_unvec + 1 msk5(i) = ( msk1(i) .or. msk4(i))
R msk6(i) = (msk2(i) .or. msk3(i))
elseif (cdtl_unvec) enddo
left_unvec = left_unvec 1$OMP SIMD

-1 do i=1, n-1

left (i) = msk5(i)*(left(i)-1) + msk6(i)*left

end (i) &

enddo

+ (1-msk5(i))*(1-msk6(i))*1left (i)
enddo

right (i) = mskb5(i)*right (i) + msk6(i)*(right
(i)+1) &
+ (1-msk5(i))*(1-msk6(i))*right (i
)

enddo
enddo
The pseudocode in Listing fails to vectorize because of the nested conditionals.
The transformations from Listing|6.2|to [6.3| enable vectorization by removing the nested
conditionals, swapping the “j-loop", the “i-loop", and placing the OpenMP directive !$OMP
SIMD. In Listing the conditionals are precomputed in the loops before line 21. These
loops are structured such that the nested conditionals are removed, and the variables
used to compute the conditions are known prior to entering the loops. Swapping the

“i-loop" and “j-loop" requires the introduction of new arrays to track the different changes

for each interval as we iterate over the “j-loop". For example, left_unvec in Listing
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becomes left(i), with the index i going from 1 to n-1. Removing the nested conditionals and
complex dependencies may still not be sufficient for compiler auto-vectorization. To ensure
vectorization, the OpenMP directive !$OMP SIMD is placed before every “i-loop", as shown
in Lisiting [6.3]

Tableshows the runtimes for the PCHIP, the original unvectorized, and the vectorized
DBI and PPI codes on a Knights Landing (KNL) core with a 2018 Intel compiler. The KNL
architecture has a clock frequency of 1.3 GHz and AVX-512 vector processing units. Further
code transformation is required for the gnu compiler as it is unable to vectorize the loops
in Listing The vectorization report indicates that the combination of control flow
and the remaining conditionals prevents vectorizations in the case of the gfortran (gnu)
compiler. In the case of the Intel compiler placing the directive $§OMP SIMD is sufficient
to vectorize the loops Listing The performance examples used functions sin(x) and
sin(x)sin(y) for the 1D and 2D cases, respectively. The PCHIP, DBI and PPI methods use n
and n x n uniformly spaced points to approximate functions. The approximated functions
are evaluated at n + 1 and (n + 1) x (1 + 1) uniformly spaced points, for the 1D and 2D
cases, respectively. The runtimes for the PCHIP method are smaller than the runtimes for
DBI and PPI methods with P4. The PCHIP method requires less data and has a less complex
control flow compared to the DBI and PPI methods. The runtimes for the vectorized version
of the DBI and PPI methods are closer to the runtimes for the PCHIP method. The results
from Table 6.1{show that reorganizing the code to improve vectorization and locality leads
to smaller runtimes compared to unvectorized code. These performance improvements
correspond to a minimum and maximum speed-up of 1.89 and 4.13 over the unvectorized

version.

6.4 Numerical Examples
This section provides 1D and 2D numerical examples used to evaluate the use of the
PCHIP, DBI and PPI methods. These examples include a subset of the full suite of test
problems considered in [77]. The interpolation methods are used to approximate positive
functions from provided data values that are obtained by evaluating the 1D and 2D functions
on a given set of mesh points. Using a standard polynomial interpolation to approximate

the different functions leads to negative values and oscillations. The L2-norms in the tables
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Table 6.1: Runtimes in miliseconds (ms) for the different interpolation method. “unvec"
and “vec" correspond to unvectorized and vectorized, respectively.

N PCHIP PPI and DBI
Py Ps P16
unvec vec unvec vec unvec vec
1D f1 (x )
17 8.11E-3 2.34E-2 1.24E-2 3.30E-2 1.22E-2 5.82E-2 1.85E-2
33 1.41E-2 4.09E-2 1.65E-2 6.31E-2 2.09E-2 1.18E-1 3.20E-2

65 2.52E-2 730E-2 2.72E-2 1.21E-1 3.89E-2 2.31E-1 6.13E-2
127 4.14E-2 1.30E-1 4.59E-2 2.46E-1 7.98E-2 4.74E-1 1.26E-1
257 8.73E-2 2.28E-1 8.80E-2 4.83E-1 1.52E-1 9.75E-1 2.36E-1

2D fy(x,y)
172 1.89E-1 542F-1 2.53E-1 111  4.36E-1 202  6.48E-1
332 7.18E-1 2 8.20E-1 4.19 1.45 7.97 2.18
652 2.79 7.52 2.92 1.63E+1 522 319E+1  7.99

1272 1.08E+1 296E+1 1.19E+1 6.34E+1 2.12E+1 1.24E+2 3.40E+1
2572 4.45E+1 1.16E+2 4.45E+1 2.54E+2 8.05E+1 5.16E+2 1.26E+2

below are approximated using the trapezoid rule with 10* and 10% x 10% uniformly spaced
points for the 1D and 2D examples, respectively. For the numerical examples in Sections
- the errors from using st = 1,2, and 3 are similar with st = 3 leading to slightly
smaller errors compared to st = 1 and st = 2. Given that the results are similar, the tables
show only errors with the parameter st set to 3. For the BOMEX example, the errors from
the three choices are significantly different. Therefore, the results from all three choices are

included. More test examples can be found in [77].

6.4.1 Example I: Modified Runge Function

This example uses a modified version of the canonical Runge function defined as

0.1

§1(%¥) = 57982 T X € [—1,1]. (6.21)

Approximating the modified Runge function g1 (x) with a global standard polynomial leads
to large oscillations. Table shows the L2-errors norms when using the PCHIP, DBI, and
PPI methods to approximate g1 (x). The DBI and PPI methods lead to better approximation
results compared to the PCHIP method. As the target polynomial degree increases from
d = 4 to d = 8, the DBI approximation does not improve significantly compared to the
PPI method. The relaxed nature of the PPI method allows for higher degree polynomial

interpolants compared to DBI and PCHIP, which leads to better approximations.
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Table 6.2: L>-errors when using the PCHIP, DBI, and PPI methods to approximate the
function g1(x). N represents the number of input points used to build the approximation.
The parameters €, €1, and st are set to 0.01,1.0, and 3, respectively.

N PCHIP DBI DBI
Ps Ps Py Ps Ps Py Ps
17 3.99E-2 5.10E-2 291E-2 4.61E-2 510E-2 291E-2 4.61E-2
33 4.52E-3 6.31E-3 9.57E-3 3.05E-3 6.31E-3 9.57E-3 3.05E-3
65 2.79E-3 244E-3 249E-3 1.33E-3 244E-3 249E-3 9.92E-4
129 6.23E-4 222E-4 1.21E-4 1.05E-4 222E-4 121E-4 243E-5
257 1.17E-4 1.51E-5 1.15E-5 1.07E-5 1.51E-5 4.68E-6 9.89E-8

6.4.2 Example II: 1D Smoothed Heaviside Function

This test case uses a smoothed version of the Heaviside function defined as

1

- 1—1-57_2]05’ k - 100, and X € [—0.2, 0.2]. (6.22)

g2(x)

The smoothed Heaviside function in Equation is challenging because of the steep
gradient at about x = 0. Approximating ¢»(x) with a standard polynomial interpolation
leads to large oscillations to the left and right of the gradient. In addition, the oscillations to
the left produce negative values.

Table shows L2-error norms when using the PCHIP, DBI and PPI methods to
approximate the smoothed Heaviside function g»(x). For a target polynomial d = 3,
the approximation errors using PCHIP, DBI, and PPI are comparable. Increasing the target
polynomial improves the approximations for DBI and PPI, as shown in Table The errors
from both the DBI and PPI methods are similar because the smoothed Heaviside example
has no hidden extrema, and the stencils used for both methods are the same, around x = 0.
The global error is dominated by the local errors in the region with the steep gradients

around x = 0. Fig. [6.2] shows approximation plots of g>(x) using N = 17 uniformly spaced

Table 6.3: L2-errors when using the PCHIP, DBI, and PPI methods to approximate the
function g»(x). N represents the number of input points used to build the approximation.
The parameters €y, €1, and st are set to 0.01,1, and 3, respectively.

N PCHIP DBI DBI
P P Py Ps P Py Ps
17 2.02E-2 241E-2 241E-2 2.14E-2 241E-2 241E-2 217E-2
33 3.38E-3 4.89E-3 4.86E-3 3.59E-3 490E-3 4.84E-3 3.63E-3
65 3.59E-4 417E-4 4.07E-4 147E-4 417E-4 4.07E-4 147E-4
129 4.21E-5 3.09E-5 1.56E-5 1.70E-6 3.09E-5 1.56E-5 1.70E-6
257 5.12E-6 2.04E-6 5.19E-7 5.22E-9 2.04E-6 5.19E-7 5.22E-9
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Fig. 6.2: Approximation of g»(x) using N = 17 uniformly spaced points with different
values of €y for the PPI method. The target polynomial is settod = 8, st = 2,and €1 = 1.

points with different values of €y and €; = 1. The target polynomial degree is set to d = 8.
For €g = 1, we observe oscillations, as shown in the right part of Fig. As €g decreases,
the oscillations decrease. For €y < 0.01, the errors oscillations are negligible compared to
errors in the region with the steep gradient. The oscillation are completely removed for

€) = 0.0.

6.4.3 Example III
This example uses a modified version of a function introduced by Tadmor and Tanner
[102] and used by Berzins [5] in the context of DBI. The value one is added to the original
function in [102] to ensure that the function is positive over the interval [-1,1] The modified
function is defined as

27rx_1_67r

1421 xe[-1,-05)
23(x) = (6.23)
1—sin(**+%), xe[-051].

Table shows L2%-error norms when using the PCHIP, DBI and PPI methods to
approximate the smoothed Heaviside function g3(x). Approximating g3(x) is challenging
because g3(x) is a piecewise function with a discontinuity at x = 0.5. The global error
is dominated by the local errors around the discontinuity. The PCHIP, DBI, and PPI
approximation results are comparable. Increasing the target polynomial degree does not
decrease the L?-error norms. The approximations in the smooth regions improve as we
increase the target polynomial degree, but the global error is dominated by the error
around the discontinuity. The error around the discontinuity does not decrease with higher
polynomial degrees.

Fig. [6.3|shows approximation plots of g3(x) using N = 17 uniformly spaced points with
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Table 6.4: L>-errors when using the PCHIP, DBI, and PPI methods to approximate the
function g3(x). N represents the number of input points used to build the approximation.
The parameters €, €1, and st are set to 0.01, 1, and 3, respectively.

N  PCHIP DBI DBI

P Ps Py Ps Ps Py Ps
17 177E1  182E-1 183E-1 182E-1  173E-1 172E-1 1.70E-1
33 139B-1  135B-1 139E-1 136E-1  135B-1 139E-1 1.36E-1
65  103E-1  995E-2 1.04E-1 1.02E-1  9.95B-2 1.04E-1 1.02E-1
129 742E2  7.12E2 7542 735E2  7.5B2 7.55B-2 7.38E-2
257 5.28E-2 5.06E-2 5.38E-2 5.24E-2 5.07E-2 5.39E-2 5.26E-2

different values of €j. The target polynomial degree is set to d = 8. The right part of Fig.
shows oscillations at the left boundary for g = 1. The oscillations are removed for ¢y < 0.1.
As expected, all the interpolation methods have difficulties approximating the function

around the discontinuity, as shown in Fig.

6.4.4 Example IV: 2D Modified Runge Function

This example extends the previously modified 1D Runge function to 2D as follows:

0.1

g4(x’y) = 01 +25(x2+y2)r x/]/ € [_1/ 1] (624)

Table shows L2?-error norms when using the PCHIP, DBI and PPI methods to
approximate the 2D modified Runge function g4(x). The DBI and PPI methods with
d = 3 lead to better approximation results compared to the PCHIP. As the target polynomial
degree d increases, the approximation errors from PPI decrease much faster than DBI. The
relaxed nature of the PPI methods allows for higher degree polynomials compared to DBIL
The bounds for data boundedness are more restrictive than positivity. In addition, the

approximation does not lead oscillations for €y and €1 € [0, 1].

-1 0 1 -1 -0.9 -0.8
X X

Fig. 6.3: Approximation of g3(x) using N = 17 uniformly spaced points with different
values of €p for the PPI method. The target polynomial is settod = 8, st =2,and ¢; = 1.
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Table 6.5: L?-errors when using the PCHIP, DBI, and PPI methods to approximate the
function g4(x,y). N represents the number of input points used to build the approximation.
The parameters €, €1, and st are set to 0.01, 1, and 3, respectively.

N PCHIP DBI DBI
Ps Ps3 Py Ps Ps Py Ps
172 1.76E-2 1.57E-2 9.09E-3 1.91E-2 2.12E-2 9.09E-3 1.91E-2
332 2.05E-3 958E-3 4.61E-3 1.25E-3 245E-3 4.61E-3 1.24E-3
652 1.05E-3 1.19E-3 9.33E-4 499E-4 859E-4 933E-4 3.51E-4
1292 2.23E-4 1.20E-4 4.76E-5 4.12E-5 747E-5 4.64E-5 7.16E-6
2572 4.19E-5 7.14E-6 4.20E-6 3.80E-6 5.05E-6 1.62E-6 2.91E-8

6.4.5 Example V: 2D Smoothed Heaviside Function

The test case extends the 1D smoothed Heaviside function from Example II to 2D.

1

—, x,y€[-02,02 6.25
1+e_\/ik(x+y) X y [ ] ( )

gs(x,y) =

The function g5(x, y) is challenging because of the large gradient at y = —x. Approximating
¢5(x, y) with a standard polynomial interpolation leads to oscillations and negative values
that violate the desired property of positivity.

Table shows L2-error norms when using the PCHIP, DBI, and PPI methods to
approximate the 2D smoothed Heaviside function gs(x,y). The DBI and PPI methods
lead to better approximation results compared to the PCHIP approach. Increasing the target
polynomial degree improves the approximation for DBI and PPI, as shown in Table
The global error is dominated by the local around the steep gradients at y = —x. The
approximations for both DBI and PPI are the same because both methods use the stencil for
the intervals around the discontinuity.

Fig. |6.4| shows an approximation plots of g5(x,y) using N x N = 17 x 17 uniformly

spaced points with different values of €; and €. The left and right plots are approximated

Table 6.6: L2-errors when using the PCHIP, DBI, and PPI methods to approximate the
function gs(x,y). N represents the number of input points used to build the approximation.
The parameters €y, €1, and st are set to 0.01,1, and 3, respectively.

N PCHIP DBI DBI
P Ps Py Ps P Py Ps
172 8.07E-3 1.05E-2 1.02E-2 8.31E-3 1.05E-2 1.02E-2 8.74E-3
332 1.26E-3 1.67E-3 1.58E-3 1.09E-3 1.64E-3 1.53E-3 9.19E-4
652 1.44E-4 1.58E-4 1.06E-4 4.94E-5 1.58E-4 1.06E-4 5.05E-5
1292 1.63E-5 1.13E-5 4.01E-6 2.66E-7 1.13E-5 4.01E-6 2.66E-7
2572 1.94E-6 729E-7 1.27E-7 5.44E-10 729E-7 1.27E-7 5.44E-10
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=104 ¢ =10"*

Fig. 6.4: Approximation of ¢5(x,y) using N x N = 17 x N uniformly spaced points with
different values of ¢y and €; for the PPI method. The target polynomial is set to d = 8 and
st = 2.

solutions using PPI with ey = €; = 1 for the left plot and €9 = €; = 10~* for the right
plot. The target polynomial degree is set to d = 8. For ¢y = €1 = 1074, the oscillations are

significantly reduced and the approximation is closer to the target solution.

6.4.6 Example VI
This example uses a 2D function used to study positive and monotonic splines [11,83].
The function is defined as follows:
2(y —x) if0<y—x<05
1 ify —x>05

golxy) = cos <47r\/(x —15)2 4+ (y— 0.5)2> if (x —1.5)2+ (y — 05)% < & (6.26)

0 otherwise.

The function gs(x, ) is challenging because it is only C” continuous at various locations.
Table shows L2-error norms when using the PCHIP, DBI, and PPI methods to
approximate the 2D smoothed Heaviside function g4(x,y). The PCHIP, DBI, and PPI
methods lead to comparable L?—error norms. Increasing the target polynomial degree does
not significantly improve the approximation for DBI and PPI, as shown in Table The
global error is dominated by the local around the C°. The approximation for both DBI and
PPI can be improved by using an underlying mesh that better captures the C°-continuity.
Fig. |6.5[shows approximation plots of gs(x,y) using N x N = 17 x 17 uniformly spaced
points with different values of eyg. The left and right plots show approximated solutions

using the PPI method. For the left plot €; = €9 = 1, and for the right plot, e; = 1y = 1074
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Table 6.7: L?-errors when using the PCHIP, DBI, and PPI methods to approximate the
function g¢(x,y). N represents the number of input points used to build the approximation.
The parameters €y, €1, and st are set to 0.01, 1, and 3, respectively.

N PCHIP DBI DBI

P P P Ps Ps Py Ps
172 191E2  172E2 169E2 163E2  172E2 1.68E2 1.59E-2
3 692E3  6.16E3 581E3 5.88E-3  6.16E-3 5.80E-3 5.87E-3
65  247E3  224E3 214E3 211E3  224E3 214E3 211E3
122 899E-4  821E-4 7.77E-4 7.63E-4  820E-4 7.77E-4 7.63E-4
2572 3.23E4 297E-4 2.81E-4 2.76E-4 296E-4 281E-4 276E-4

The target polynomial degree is set to d = 8. The oscillations observed for €; = €y = 1 are

removed for small values of €y, shown in right plot of Fig.

6.5 Mapping Error in an Application Example

In addition to the development and study of the DBI and PPI methods, it is important
to provide some insight into the behavior of the mapping error in the context of time-
dependent PDEs. An example of a time-dependent problem where a positivity-preserving
mapping is required is the US Navy Environmental Prediction System Utilizing a Nonhydro-
static Engine (NEPTUNE) [49]. NEPTUNE is a next-generation global NWP system being
developed at the Naval Research Laboratory (NRL) and the Naval Postgraduate School
(NPS). In NEPTUNE, the physics and dynamics are calculated using different meshes and
require mapping the solution values between both meshes. NEPTUNE uses a nonuniform
structured meshes that have vertical columns with nonuniformly spaced points inside each

column. The mapping must preserve positivity for quantities such density and cloud water

Fig. 6.5: Approximation of g¢(x,y) using N x N = 17 x N uniformly spaced points with
different values of €( for the PPI method. The target polynomial is set to d = 8, st = 2, and
€1 = 1.
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mixing ratio. The cloud water mixing ratio is the amount of cloud water in air. At each time
step, the dynamics (advection) solutions, which are calculated on the dynamics mesh, are
mapped to the physics mesh to be use as input for the physics calculations. The physics
results are then mapped back to the dynamics to be used as input for the next time step.
Enforcing positivity alone may still lead to large oscillations and approximation errors.
Using the DBI method will remove the large oscillations but will truncate any hidden
extremum and may be too restrictive for high order accuracy in some cases. For simulations
where different structured meshes are used and mapping is required, the errors from
both the DBI and unconstrained PPI will propagate into other calculations and may even
cause the simulation to fail. This section provides an analysis of the mapping error when
interpolating from one mesh to another and back to the starting mesh. The mapping error is
considered within time-dependent PDEs. For example, when interpolating the data values
between the dynamics and physics mesh in NEPTUNE, a mapping error is introduced in
addition to the physics and time integration errors. The error in approximating a function

u(x) with the Newton polynomial U, (x) over the interval I; is

u (@) ﬁ(x —-x3), x€l (6.27)

En() = ulx) —th(x) = 79571

where & € [x!, x7]. Given that ¢ and u("*1) are not known, the local interpolation error can

approximated as follows:

n
En=Ulx) - xp] [ Axe (6.28)
k=0
where
Axk:max<|x(i)—xi|,|x(i+1) —xi|>. (6.29)

The error approximation in Equation (6.28) is based on the mean value theorem for divided

differences, which states that there exist & € [x/,, x},] such that

(n+1)
Ulx), - x] = u(n - g%?) (6.30)

Equation approximates the local interpolation error for each interval when
mapping from one set of points to another. To consider a mapping error for interpolating
from one meshes to another and back to the starting mesh, let M p and M p be the dynamics
and physics mesh, respectively. In addition, let Ipp and Ipp be the interpolation operators

that map a given set of data values from Mp to Mp and from Mp to Mp, respectively. We
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consider an advection-reaction problem where the advection part is calculated on Mp and
the reaction on Mp. A simple forward Euler time integration in used. Let ii; and 7, be the

approximate and the exact solution at time 7;. The dynamics/advection part is written as
_1 - _
Uriar = Ur + ATF(M-[), (631)
and the physics/reaction @**47 is expressed as

Wrinr = Hilh 5y, (6.32)

1

where Hiil = IppG(Ippiiy, 5.)- Let E+; a7 be the global space and time error accumu-

T+AT

lated up to T + At after the advection and before mapping the solution values to Mp.

E+{ ar does not include the mapping errors at T + At. The final solution after applying the
operator H is

flriar = ey pg + Hilb, pre (6.33)

The true solution 7l Ar at the end of time step T + AT and after the mapping from Mp to

Mp and back Mp to can be expressed as
frsar = ey ar + Evpar + H(d g + Eviar), (6.34)

where H is assumed to be the corresponding “exact" operator for H. Subtracting Equation

(6.34) from (6.33) gives an expression for the true error that can be written as
E$+AT =Eriact H(L_‘LLAT + ET+AT) - HTZLLAT, (6.35)

where E© is the global space and time error including the mapping errors at T + At. Adding

and subtracting H (ﬂi act Eqy AT) yields

EIC';+AT =Eriact H(ﬁhm + ET+AT) - H(L_‘er + EH—AT) + H(ﬁhm + ET+AT) - Ha”lf-‘rAT'
(6.36)
Using a Taylor expansion of H (i, ,, + Er4ar) about i}, | and dropping the high order

terms, we can approximate the total errors as
G & T (STHAT | F -1 F oH
E-L—+1 ~ ET+AT + H(Ml =+ ET+AT) - H(”T+AT + ET+AT) + g(uT+AT)ET+AT' (637)

The results in Equation (6.37) indicate that the total error is dependent on
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e the existing global space and time error E;, ; that does not include the mapping

error at T + AT,

e the mapping error Eﬁ Ar At T+ AT,

Eiar = H(iriac + Ecear) — H(iriar + Eviac) (6.38)
= Hﬁhm - Hﬁhmz and
e a multiplier of the existing global space and time error E;ar,
oH _
Ei\;m = @(M}PFAT)ET—FAT- (6.39)

Mapping data values from Mp to Mp and back to M p introduces the interpolation errors

that degrade the solution if EM , is greater than the existing global space and time error

E i Ar. This problem is resolved when the mapping error is kept smaller than the existing
global space and time error. Similar ideas in the context of time dependent differential
equations are explored in [4}35,[59]. The studies in [35] and [59] develop strategies for
balancing the space and time error for better error control and improved performance
whereas [4] shows that in mesh adaptivity the spatial interpolation error must be controlled

smaller than the temporal error.

6.6 Mapping Examples

This section evaluates the use of the positivity-preserving interpolation to map data
values between two different meshes. The Runge and TWP-ICE examples use meshes that
emulate the dynamics and physics meshes used in NEPTUNE. These meshes are constructed
by linearly scaling the NEPTUNE vertical mesh points to the desired interval for the Runge
and TWP-ICE examples. In the BOMEX example, the dynamics mesh is composed of
uniformly spaced points, and the physics mesh is constructed using the mid-point of each
interval from the dynamics mesh. In Examples and we consider the max error
instead of L2-norm error because the global error is dominated by the local errors in few

locations around the large gradients.

6.6.1 1D Modified Runge Function
The examples are based on a modified version of the Runge function defined in Equation

(6.21) and two meshes that are similar to the dynamics and physics meshes used in
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NEPTUNE. The modified Runge function increased the steepness on the left and right side
of the x = 0 compared to the canonical Runge function 1/ (1 + 25x2). The function g1 (x) is
evaluated on the first mesh (dynamics mesh) to create the initial data values. These data
values are mapped to the second mesh (physics) mesh and back to the starting mesh.
Table 6.8/ shows maximum values of mapping errors over the grid points for g when
using the PCHIP, DBI, and PPI methods to map the data values from the dynamics to the
physics mesh and back to the dynamics mesh. For n = 64 points, increasing the interpolant
degree does not significantly improve the approximation. The global error is dominated by
the local error in the regions with steep gradients that are to left and right of the peak at
x = 0. The mapping errors can be improved by increasing the resolution and adding more
points in the regions with steep gradients. The resolution is increased by adding one or three
uniformly spaced points in each interval from the initial profile with 64 points. Increasing
the resolution leads to better approximations when mapping data values between both
meshes, and the error decreases as we increase the polynomial degree from 3 to 7. This
example demonstrates that in cases with steep gradients, using the PPI method high-order
interpolants may not improve the approximation unless there is sufficient resolution. In
order to benefit from the positivity and the high-order interpolants, it is important to
be in the regime where the problem has sufficient points to observe convergence as the
polynomial degree increases. Overall, the PPI method leads smaller errors compared to the

other methods.

6.6.2 TWP-ICE Example
This study uses the tropical warm pool international cloud experiment (TWP-ICE)

test case from the common community physics package (CCPP). The input mesh for the

Table 6.8: Maximum values of mapping errors for the modified Runge function g4 (x) when
using the PCHIP, DBI, and PPI methods to map the data values from dynamics to physics
mesh and back to dynamics mesh. The target polynomials are settod = 3,d =5and d = 7.
N represents the number of input points used for both meshes. The parameter st is set to 3

N PCHIP DBI PPI

Ps Ps Ps Py Ps Ps Py
64 1.07E-2 1.76E-2 2.59E-2 1.83E-2 1.76E-2 1.45E-2 1.35E-2
127 268E-3  343E-3 344E-3 3.44E-3  142E-3 550E-4 141E-4
253 7.47E-4 8.62E-4 8.57E-4 8.57E-4 1.40E-4 2.27E-5 1.41E-5
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simulation is configured to emulate a vertical column in NEPTUNE. The simulation result at
time t = 1440 sec is extracted scaled, and used to evaluate different interpolation approaches
when mapping solution values between dynamics and physics meshes. The domain and
range are scaled to [—1,1] and [0, 1], respectively. This study considers the cloud water
mixing ratio profile, which represents the amount of cloud water in air. The extracted profile
is then fitted using a radial basis function interpolation to construct an analytical function
that can be used as the starting point of the mapping evaluation. The radial basis function

is based on multiquadrics.

b; = \/1 + (e]x — x;])2. (6.40)

The parameter € is approximated using cross validation [27]. The initial values are obtained
by evaluating the analytical function on the dynamics mesh. These values are then mapped
to the physics mesh and back to the dynamics mesh.

Table[6.9/shows maximum values of mapping errors for the extracted profile when using
the PCHIP, DBI, and PPI methods to map the data values from the dynamics to the physics
mesh and back to the dynamics mesh. For n = 64, the global error is dominated by the
local error at a couple points located in the regions with steep gradients. Increasing the
polynomial degree does not significantly improve the approximation compared to using
PCHIP for n = 64. More points are required to better approximate the underlying profile in
the regions with steep gradients. The resolutions are increased by adding one and three
uniformly spaced point in each interval from the initial # = 64 mesh points. Table 6.9/ shows
that with the increased resolution, the approximation improves as the polynomial degree
increases. The number of points used in each region with steep gradients increased as more
points were added. This example provides an application example using simulation data
from TWP-ICE. In cases of coarse resolution (64) points, the PPI, DBI, and PCHIP results
are comparable, and going to higher degree interpolants does not significantly improve the
approximation. The approximation improves with higher degree interpolants when the
resolution is increased, as shown in Table The results from this experiment suggest that
increasing the resolution is needed for the mapping between meshes to benefit from the

high-order interpolants from the PPI methods.
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Table 6.9: Maximum values of mapping errors for the TWP-ICE profile when using the
PCHIP, DBI, and PPI methods to map the data values from dynamics to physics mesh and
back to dynamics mesh. The target polynomials are settod = 3,d = 5andd =7. N
represents the number of input points used for both meshes. The parameter st is set to 3

N PCHIP DBI PPI
P3 P Ps P; P Ps P
64 1.25E-2 4.02E-2 3.77E-2 3.67E-2 1.68E-2 7.20E-3 4.96E-3
127 6.71E-3 1.84E-2 1.89E-2 1.89E-2 3.72E-3 1.39E-3 7.10E-4
253 2.68E-3 495E-3 4.77E-3 4.75E-3 6.60E-4 1.09E-4 2.78E-5

6.6.3 BOMEX Example

The 1D Barbados Oceanographic and Meteorological Experiment (BOMEX) [32] is a
single column test case that was developed to measure and study changes in the properties
of heat, moisture, and momentum. In this example, the dynamics and physics results are
calculated on different meshes. The dynamics uses uniformly spaced points that indicate
the boundary of each level in the vertical column. The physics mesh is constructed using the
mid-point of each level. The advections in the dynamics are approximated using fifth-order
weighted essentially nonoscillatory (WENO) and third-order Runge-Kutta methods [94].
At each time step, the dynamics are calculated on the dynamics mesh, and the results are
interpolated to the physics mesh for the use of the physics routines. The physics terms are
calculated using the physics mesh, and the results are interpolated back to the dynamics
mesh.

As in [86], let g. be the cloud water mixing ratio profile in the different experiments. The
cloud water mixing ratio represents the amount of cloud water in air. Fig. - show
the cloud mixing ratio profile q. at t = 5h that is used as input for the physics routines.
The physics calculations require positive input values for g.. Fig. shows the target
profile for g.. This target profile is obtained by using the same mesh for both dynamics
and physics calculations where mapping is not required and g, remains positive during the
simulation. In addition, as the temporal and spatial resolution increases, 4. converges to

the profile shown in Fig. [6.6a] Fig.[6.6b|-[6.7fare used to investigate different interpolation

methods for mapping the solution values between meshes in the case where the dynamics
and physics are calculated using different meshes.
Fig. shows the cloud mixing ratio profiles g. for the target and approximated

solution at t = 5h. In the case of the approximated solution, a fifth-order standard
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Fig. 6.6: Cloud mixing ratio q. profile from the BOMEX test case at t = 5h with nz = 600
points. A fifth-order WENO and third-order Runge-Kutta schemes with CFL = 0.1 are
used for the dynamics (advection). the black plot in|6.6b} |6.6c, and [6.6d| represents the
target profile where the same mesh is used for the dynamics and physics calculations. In
[6.6b} |6.6¢, and |6.6d] the profiles in blue use different meshes for the dynamics and physics
calcultions which require mapping the solution values between both meshes. A standard
polynomial interpolation, a standard polynomial interpolation with “clipping", and PCHIP
methods are used for the mapping in|6.6b}, 6.6c, and [6.6d} respectively.

polynomial interpolation is used when mapping between dynamics and physics meshes.
For a given interval [;, the polynomial interpolant is constructed using the stencil V, =
{xi_2,Xi_1,Xi, Xi+1, Xi+2, Xi+3 }. At the boundary and nearby boundary intervals, the stencil
V, is biased toward the interior of the domain. The results in Fig. demonstrate
that using the standard polynomial interpolation leads to oscillations, negatives values,
and an overestimation of the peak and total cloud mixing ratio of the profile g.. Using
standard polynomial interpolation leads to an overproduction of the total cloud mixing

ratio by 93.45%. The peak is max(q.) = 0.46g/kg, which is larger than the target peak
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Fig. 6.7: Cloud mixing ratio g, profile from the BOMEX test case at t = 5h with nz = 600
points with €9 = €; = 107°. The profile in black is the target solution. The profiles on the
left and right are obtained using the DBI and PPI methods, respectively, to map solution
values between meshes. The maximum polynomial degrees are set to 5 and 7 for the blue
and red plots, respectively. A fifth-order WENO and third-order Runge-Kutta schemes with
CFL = 0.1 are used for the dynamics (advection).
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max(g.) = 0.28¢/kg.

The negative values in Fig. [6.6b|can be removed via “clipping", which is a procedure that
consists of removing the negative values by setting them to zero [98]. Fig. shows the
cloud mixing ratio profiles for the target solution and an approximated solution that uses
“clipping" to remove the negative values at each time step. The approximated solution uses
a standard interpolation to map the data values from one mesh to another. The interpolant
for each interval is constructed using the stencil Vs = {x;_», X;_1, Xj, Xi11, Xj42, Xi+3} with a
tifth-order polynomial. Once the interpolation is completed, “clipping" is used to remove
the negative values. Fig. shows that using “clipping" still allows for oscillations and a
positive bias in the prediction of the cloud mixing ratio q.. The total cloud mixing ratio is
2.09 times greater than the target solution, and the peak max(q.) = 0.46g/kg is larger than
the target peak max(q.) = 0.28¢/kg.

Using PCHIP to map between the dynamics and physics meshes eliminates the negative
values, removes oscillations, and reduces the positive bias in the cloud mixing ratio
prediction compared to the standard interpolation with and without “clipping". Fig.
shows the target profile g, and an approximated profile that uses PCHIP for mapping
solution values between dynamics and physics meshes. The total cloud mixing ratio is
now 27.21% less than the target with a peak max(g.) = 0.21g/kg. In the BOMEX test case,
NEPTUNE, and similar codes, using PCHIP for mapping data values from one mesh to
another can degrade the high-order accuracy obtained from the high-order methods used
for the dynamics calculations. PCHIP is only third-order whereas the dynamics calculations
use a fifth-order method. This limitation can be addressed via high-order DBI and PPI.

Fig.s show cloud mixing ratio profiles for the target and approximated solutions
that use the DBI and PPI methods to map the solution values between meshes. The
maximum polynomial degree for the DBI and PPI methods is set to 5 and 7, and the
parameters €p and €; are both set a value of 1075, For larger values of €y and €1, the
PPI approach introduces oscillations that lead to positive bias prediction of the cloud
mixing ratio. These oscillation are caused by the relaxed nature of the PPI approach, which
still allows the interpolants to oscillate while remaining positive. The positive bias and
oscillations can be removed using the DBI or PPI method with small values for ¢y and e;.

When using the PPI method for mapping, the total amount of the cloud mixing ratio is
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less than the target for st = 1 and more than the target for st = 2 and st = 3. Fig.
show that using the DBI and PPI methods with g = €1 = 107% to map data values between
the dynamics and physics meshes eliminates the negative values, removes the oscillations,
and significantly reduces the positive bias in the cloud mixing ratio prediction. Using the
DBI and PPI methods leads to a better approximation of the peak value of the total cloud
mixing ratio compared to using the standard interpolation and PCHIP approaches. The
best approximation of the total amount of the cloud mixing ratio is with the DBI method,
which is 7.57% more than the target with a peak of max(q.) = 0.28¢/kg.

In summary, using DBI and PPI methods to map data values between both dynamics
and physics meshes produces better approximation results compared to the standard
interpolation and PCHIP methods. Tables[6.10]and [p.11provide a summary of the maximum
values and the total amount of cloud mixing ratios for each case. The DBI and PPI methods
with a target polynomial set to d = 7 lead to a better approximation of the peak and
the total the cloud mixing ratios compared to the standard interpolation and PCHIP
approaches. The results from Tables and indicate that the DBI method is the
most suitable approach to map data values between meshes for the BOMEX test case.
This study provided an example demonstrating how to use the DBI and PPI methods
for mapping data values between meshes in the context of NWP. The BOMEX example
also demonstrated that positivity alone may not be sufficient to remove oscillations in the
solution, and the interpolants may need to be constrained to be between the data values for

a better approximation.

Table 6.10: Maximum values of g, and the total amount of the cloud mixing ratio at t = 5h
with nz = 600 points. The total amount of the cloud mixing ratio is calculated by estimating
the integral g.. The units of q. are g/kg.

Target STD  Clipping PCHIP
maximum g,  0.28 0.46 0.46 0.21
total g, 69.82 135.07  145.89 50.82
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Table 6.11: Maximum values of g, and the total amount of the cloud mixing ratio at t = 5h
with nz = 600 points and €y = €; = 10~°. The total amount of the cloud mixing ratio is
calculated by estimating the integral g.. The units of g, are g/kg.

st=1 st=2 st=3 st=1 st=2 st=3

Ps P Target
DBI
maximumg. 0.20 0.20 0.31 0.30 0.30 0.28 0.28
total g, 4591 4774 8798 86.57 82.67 75.11 69.82
PPI
maximum g, 0.20 0.21 0.33 0.32 0.29 0.29 0.28

total g, 47.87 50.09 97.60 9254 8144 78.85 69.82

6.7 Discussion and Concluding Remarks

This work presents a high-order 1D, 2D, and 3D data-bounded and positivity-preserving
interpolation software HiPPIS for function approximation and mapping data values be-
tween different structured meshes. The software implementation is based on the math-
ematical framework in Section and the algorithms in Section The software is
self-contained and easy to incorporate into larger codes. The interface is designed to
be similar to commonly used PCHIP and splines interfaces. The algorithms used in the
software extend the DBI and PPI methods introduced in [82] by adding more options for
the stencil construction process that can be set by the user with the parameter st. For a given
interval [, the algorithm starts with the stencil Vy = {x;, x;;1} and successively appends
points the left and/or right of V to form the final stencil. The stencil construction is done
in accordance with the DBI and PPI conditions outlined in Equations and (6.19b).
In addition to the different options for stencil selection process, the software introduces
a parameter €1 that can be used to adjust the bounds of the interpolants in the intervals
where extrema are detected.

Section[6.5|provides an analysis of the mapping error when the PPT and DBI methods are
used to map data values between different meshes. The analysis shows that it is important to
keep mapping errors smaller than the already existing global errors from other calculations.
Removing negative values and spurious oscillations can help reduce the mapping error.

Various 1D and 2D examples are employed to evaluate the use of the DBI and PPI
software in different contexts. The results in Tables[6.8/and [6.9|show that using small values

for parameters €p and €; improves the approximation in cases where the input data are
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coarse. Small values of €y and €; further restrict how much the interpolant is allowed to
grow beyond the data values. The parameters €y and €1 are used to adjust the lower and
upper bounds on each interpolant according to Equations and (6.15).

The differences between st = 1, st = 2, and st = 3 are negligible in the case of function
approximation, as shown in Tables - However, in the BOMEX test case, prioritizing
a symmetry (st = 2) or locality (st = 3) leads to better approximations compared to the
ENO stencil (st = 1) using the DBI PPI methods. Using the ENO stencil (st = 1) produces
significantly less cloud mixing ratio compared to both the prioritizing symmetry and locality.
In the BOMEX example with parameters € and €; greater than 1072, the PPI method allows
for oscillations that degrade the approximation compared to the DBI and PCHIP approaches.
The study of the modified Runge example in Section[6.6.1|and TWP-ICE example in Section
[6.6.2] demonstrated that for a profile with steep gradients or fronts, more points are required
to better take advantage of the DBI and PPI algorithm. If there are not enough points in the
regions with steep gradients or fronts increasing the polynomial degree may not improve
the accuracy. The results in Tables [6.8)and |6.9|show that once the resolution is sufficiently
increased, the approximations improve as the polynomial degree increases.

In summary, this work provided: 1) a high-order DBI and PPI software for 1D, 2D, and
3D structured meshes; 2) an analysis of the mapping error when using the DBI or PPI to map
data values between meshes; 3) an evaluation of the DBI and PPI methods in the context
of function approximation and interpolating data values between different meshes; and 4)
code and data restructuring techniques used to enable vectorization, increase locality, and
improve overall computational performance. As this work continues, we plan to investigate
different approaches for extending the DBI and PPI methods to unstructured 2D and 3D

meshes.



CHAPTER 7

SUMMARY AND FUTURE WORK

7.1 Summary and Contributions

The advances in NWP are largely dependent on the progress in computational resources
and the ability to develop different methods to effectively use these resources. The exascale
systems offer a new opportunity to further improve NWP skills and reach the desired 1 km
resolution for global weather and climate model. This body of work highlights some of the
challenges in preparing NWP code for the exascale era and beyond. The research in the
dissertation is organized into two major parts. The first part, composed of Chapters[2land
focuses on indentifying performance bottlenecks and developing strategies to remove
those bottlenecks. The second part, composed of Chapters [} [5, and [p} introduces a novel
approach for mapping solutions values between meshes and evaluating the use of this
approach in the context of coupling physics and dynamics in NWP code.

Chapter [2 examines the impact of OpenMP directives on a Fortran-based WSM6
microphysics code in WRFE. The synthetic examples measured the cost of thread overhead
and tested the effectiveness of various directives with and without OMP SIMD. This study
suggests that whereas greater scalability may be possible with high-level OpenMP con-
structs, parallelization of dependency-free code sections is possible with a few modifications
to the original code. Extending the lesson learned from the synthetic examples to WSM6
delivers 50x - 100x speed-ups over serial code.

Chapter 3|investigates high-level and low-level optimization strategies for NWP codes.
These strategies employ thread-local structures of arrays (SOA) and OpeMP directives such
as OPM SIMD, and minor code transformations to enable better utilizations of SIMD units,
increase parallelism, improve locality, and reduce memory traffic. The studies and examples

in Chapter |3|demonstrate the benefits of high-level optimization using thread-local SOA,
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coupled with low-level SIMD using OMP SIMD. The optimized versions of WSM6, GFS
physics, and GFS radiation run 70, 27, and 23 times faster, respectively, on KNL and 26, 18,
and 30, times faster, respectively on Haswell compared to their respective original serial
versions. Although this work targets WRF physics schemes, the findings are transferable to
other performance optimization contexts and provide insight into the optimization of codes
with complex physical model models for present and near-future architectures with many
core and vector units.

Chapter 4 which starts the second part of the dissertation, introduces new data-bounded
and positivity-preserving interpolation methods for function approximation and for map-
ping solution values between meshes. This chapter demonstrates that it is possible to
construct high-order interpolation methods over arbitrarily spaced interpolation points in a
way that ensures either data boundedness or positivity preservation within user-supplied
bounds. The algorithm developed comes with theoretical estimates, presented herein,
that provide sufficient conditions for data boundedness and positivity preservation. This
work extends the ideas in [5] by addressing data boundedness and positivity (within
user-supplied bounds) in the same framework and by allowing irregular meshes. Thus,
these new proofs provide the previously missing theoretical underpinning for complex in-
terpolation cases such as those like the NWP case described above. The new approach used
here both generalizes the DBI method to nonuniform meshes and extends the approach to
preserve positivity (positivity-preserving interpolation PPI) rather than the more restrictive
data-bounded approach in [5].

Chapter |5 evaluates the new approach against several typical algorithms in use on
a range of test problems in one or more space dimensions. The results obtained show
that the new method is competitive in terms of observed accuracy while at the same time
preserving the underlying positivity of the functions being interpolated. The different
test functions include smooth, C%-continuous, discontinuous, and steep-gradients. The
comparison undertaken focuses on how accurately the different methods can represent this
underlying set of test functions. This study shows that the new methods are well suited for
function approximation and mapping data values between meshes. The generality of this
approach suggests that these methods also have application to other problems for which

preserving positivity is important.
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Chapter [f| introduces open-source software for high-order data-bounded and positivity-
preserving interpolation (HPPIS) that addresses the limitations of both the spline and
polynomial rescaling methods. HPPIS uses a given set of data points to construct high-
degree polynomial interpolants that are positive over the domains in which they are defined.
The high-order positive interpolants obtained from HPPIS are suitable for approximating
and mapping physical quantities such as mass, density, and concentration between meshes
while preserving positivity. HPPIS provides a Fortran and Matlab implementation of the
data-bounded and positivity-preserving methods. Both the Fortran and Matlab versions are
self-contained and easy to integrate into other application software requiring positivity. In
addition to the software, this work provides an analysis of the mapping error in the context
of PDEs, uses several 1D and 2D numerical examples to demonstrate the benefits and
limitations of HPPIS, and introduces different strategies to improve locality, vectorization,
and, overall, the performance of the data-bounded and positivity-preserving interpolation

methods in HPPIS.

7.2 Lessons Learned
The research undertaken in this dissertation provided valuable insights to consider when
optimizing performance scientific application codes and developing high-order numerical

methods for these scientific applications.

e OpenMP is a suitable choice for node level performance on many- and multicore
architectures. Chapters [2|and |3 demonstrated that OpenMP directives can be used
to enable and improve thread and vector parallelism with minor changes in NWP
codes and similar applications for many- and multicore architectures. The evaluation
of the overhead associated with using OpenMP directives indicates how much work

is required to minimize the overhead and benefit from thread and vector parallelism.

e Complex control flows are detrimental to performance at the node level because they
prevent vectorization. Chapters[2and 3|showed that to benefit from vector parallelism,
it is important to remove or reduce conditionals and dependencies used inside the

loops.

e The performance can be further improved by organizing the code and data structures
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that maximize spatial and temporal locality while minimizing memory traffic. Chapter
demonstrated that using high- and low-level code and data restructuring coupled

thread-local structures of arrays can help improve performance.

e In many cases, enforcing data boundedness may be too restrictive and truncate hidden
extrema whereas enforcing positivity alone may lead to large oscillations. We observe
this behavior because enforcing positivity alone does not restrict how much the
polynomial is allowed to grow beyond the data values. In addition to enforcing
positivity, it is important to remove the undesirable oscillations and extrema as much
as possible. Chapter [4 addresses this limitation by introducing an user-supplied

parameter that is used to constrain the positive interpolant as needed.

o The extensive testing in Chapters[2|and |3| demonstrated that the DBI and PPI methods
are well suited for approximation and mapping solution values between different
meshes. Both methods provide high-order accuracy while enforcing data bounded-
ness and positivity preservation. In regions with sharp gradients, discontinuities, and
CP-continuity, the approximations from both approaches are comparable to cubic and

quintic shape-preserving spline methods.

e For time-dependent PDEs where positivity-preserving mapping is required, it is
important to keep interpolation error smaller than the already existing errors from
time integration and previous time steps. Chapter [f|showed that if the interpolation
error dominates, it may be amplified after several steps and cause the simulation to
fail. Increasing the resolution and constraining the interpolant are approaches that

can be used to improve the interpolation accuracy.

7.3 Future Directions
Although this body of work provides several methods addressing the various perfor-
mance and numerical challenges in NWP codes, several bottlenecks and interesting research

questions remain need to be solved.

e KNL is no longer the target architecture for NEPTUNE and will not be used in the
Exascale systems. Evaluating the performance strategies introduced in Chapters2land

on the intended architectures may further highlight new performance challenges
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and help prepare NWP codes for the Exascale systems. In addition, it is important to
explore performance portable approaches for NEPTUNE across hybrid systems that

use different architectures, including CPU and GPU.

The DBI and PPI methods presented in this dissertation build on ideas from ENO-
type reconstructions that are challenging to vectorize and less accurate compared to
WENO-type reconstruction. Building DBI and PPI methods based on WENO-type

reconstruction will help improve accuracy and performance.

In many scientific applications, there is a strong incentive to use high-order methods.
However, in problems with coarse resolutions, sharp gradients, and discontinuities,
high-order approximations may degrade the accuracy. A convergence study to
investigate and determine the resolution and conditions required for high-order
polynomial approximation to improve as the polynomial decrease would provide a
guide for when and how to use high-order interpolation for scientific applications

such as NWP.

NWP code and many other scientific applications are constructed by coupling several
other applications that have been developed independently. These coupling processes
often do not investigate how the errors from the different models interact and affect
the applications. For example, an interesting research question would be to evaluate
the effective order of accuracy for coupling the dynamical cores with the physics

schemes.

The positivity preserving mapping in NEPTUNE is required because the dynamics
uses a spectral element mesh that is different from the uniform mesh used for physics
calculation. Another approach worth investigating would be to consider using the
same meshes for both dynamics and physics. This change would remove the need

for mapping solution values between meshes and the errors introduced from such

mapping.

7.4 Publications
. Timbwaoga A. J. Ouermi, Robert M. Kirby, and Martin Berzins. “HPPIS: A High-

Order Positivity-Preserving Mapping Software for Structured Meshes." Submited for
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publication (2022)

. Timbwaoga A. J. Ouermi, Robert M. Kirby, and Martin Berzins. “ENO-Based High-
Order Data-Bounded and Constrained Positivity-Preserving Interpolation." Numerical

Algorithms. 2022.

. Timbwaoga. A. ]J. Ouermi, Robert M. Kirby, and Martin Berzins. “Numerical Testing
of a New Positivity-Preserving Interpolation Algorithm." Technical Report. arXiv
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