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(@) Mean-field isocontour
(does not depict uncertainty)

(c) Probabilistic isocontour
(depicts uncertainty without visual clutter)
Analytical (our method): 0.0061 s
MC sampling (classical): 11.87 s

(b) Spaghetti plot
(depicts uncertainty, but cluttered)

Figure 1: Mean-field (a) vs. probabilistic (b-c) isocontour visualization of the divergence of the wind vector field ensemble [35]
for the divergence isovalue —2.525. The mean divergence isocontour depicted in black (a) delineates potential positions of sink
or negative divergence (the dark blue regions), but it does not depict its positional uncertainty, leading to potential errors in
analysis. The spaghetti plot of isocontours (b) extracted from all ensemble members [32] reveals new isocontour positions that
are vanished or truncated in the mean-field isocontour (illustrated by the magenta boxes). However, the spaghetti plot approach
can lead to significant visual clutter. The LCP map [29, 30] (c) visualizes the probabilistic isocontour positions and clearly
reveals positions of isocontour uncertainty (again, illustrated by magenta boxes). Our proposed analytical approach to derive the

LCP map is highly efficient, providing a speed-up of over 1946 x, compared to the classical MC sampling method.

ABSTRACT

This work focuses on visualizing uncertainty of local divergence of
two-dimensional vector fields. Divergence is one of the fundamen-
tal attributes of fluid flows, as it can help domain scientists analyze
potential positions of sources (positive divergence) and sinks (nega-
tive divergence) in the flow. However, uncertainty inherent in vector
field data can lead to erroneous divergence computations, adversely
impacting downstream analysis. While Monte Carlo (MC) sam-
pling is a classical approach for estimating divergence uncertainty,
it suffers from slow convergence and poor scalability with increas-
ing data size and sample counts. Thus, we present a two-fold con-
tribution that tackles the challenges of slow convergence and lim-
ited scalability of the MC approach. (1) We derive a closed-form
approach for highly efficient and accurate uncertainty visualization
of local divergence, assuming independently Gaussian-distributed
vector uncertainties. (2) We further integrate our approach into
Viskores, a platform-portable parallel library, to accelerate uncer-
tainty visualization. In our results, we demonstrate significantly
enhanced efficiency and accuracy of our serial analytical (speed-up
up to 1946 x) and parallel Viskores (speed-up up to 19698 ) algo-
rithms over the classical serial MC approach. We also demonstrate
qualitative improvements of our probabilistic divergence visualiza-
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tions over traditional mean-field visualization, which disregards un-
certainty. We validate the accuracy and efficiency of our methods
on wind forecast and ocean simulation datasets.

Index Terms: Uncertainty visualization, divergence, vector fields,
probability, Gaussian.

1 INTRODUCTION

Divergence is one of the fundamental characteristics of the vector
field data. Intuitively, it represents the amount of net flow in a local
neighborhood. Visualization and analysis of divergence, therefore,
can help domain scientists analyze the positions of sources (posi-
tive divergence) and sinks (negative divergence) within the vector
field. Uncertainty in acquired vector field data, however, can prop-
agate into the divergence computation, possibly leading to errors
in downstream analysis. Uncertainty is inherent in simulation and
measurement data stemming from a variety of factors, including
fixed-bit precision, discretization errors, model assumptions, and
parameter selection [16, 15, 31]. Visual communication of uncer-
tainty is important in mitigating data misrepresentation and errors
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in analysis. In this paper, we study the propagation of uncertainty
in divergence computation for robust visualization and analysis of
uncertain vector fields.

Monte Carlo (MC) is a well-established paradigm for quantify-
ing and visualizing uncertainty [30, 27]. However, MC methods
suffer from a major performance bottleneck: a large number of
samples of the underlying probability distribution are required for
convergence to a true solution. Thus, MC sampling methods are
computationally expensive and do not scale well with increasing
sample count and data size, rendering them ineffective in practice.

Multiple recent efforts have addressed the performance and scal-
ability bottlenecks of MC solutions. In particular, three main di-
rections are pursued. First, fast and accurate analytical solutions
of uncertainty quantification for important data features (critical
points [7] and isosurfaces [29, 2]) have been derived for probabilis-
tic data models. Second, parallel algorithms and hardware accelera-
tion techniques have been devised to improve computational perfor-
mance for uncertainty visualization [36, 13]. Third, artificial neural
networks have been investigated as surrogate models to accelerate
uncertainty estimation [12, 9]. Inspired by these efforts, we pro-
pose a novel analytical solution combined with parallelization for
accurate, efficient, and scalable quantification and visualization of
divergence uncertainty.

In summary, we analytically derive the divergence uncertainty
when uncertainty in the vector field is characterized by indepen-
dent Gaussian noise (a common noise model used in multiple prior
studies [29, 6]). We present a parallel algorithm using the Visko-
res library (previously known as vtk-m [21]) and utilize hardware
acceleration (OpenMP and GPU) to speed-up computation. We
showcase significantly improved accuracy and substantial speed-
up/scalability of our serial and parallel analytical techniques over
the serial MC approach. We validate and demonstrate the effective-
ness of our methods on the wind and ocean simulation datasets.

2 RELATED WORK

The field of uncertainty visualization has significantly progressed in
the past two decades. Given the critical connection of uncertainty
with the reliability of conclusions and decision-making, significant
research has focused on studying uncertainty propagation in scalar
field visualization algorithms. Examples include uncertain isosur-
faces [30, 2, 5], uncertain direct volume rendering [18, 3], and un-
certain topological visualizations [28, 17, 4]. However, research
in uncertainty visualization of vector and tensor field data is still in
the early stages, largely due to the added challenges posed by the
higher dimensionality and complexity of these data [31].

We discuss a few works in vector field uncertainty visualiza-
tion. A majority of existing methods have modeled uncertainty
in vector field data with multivariate Gaussian distribution and
developed MC sampling algorithms to convey positional uncer-
tainty in important flow features, such as critical points [27], vor-
tex positions [24], particle densities [22, 23], and finite-time Lya-
punov exponent (FTLE) [11]. Other approaches for directly extract-
ing flow features from ensemble data include a Helmholtz-Hodge
decomposition [33], Approximate Parallel Vectors (APV) [10],
and a generalization of boxplot [37, 20] to contours and curves.
Botchen et al. [8] proposed a novel texture-based streamline smear-
ing technique to convey uncertainty of vector fields. Several
glyph-based approaches and novel glyph designs have been de-
vised [25, 14, 26, 19] to convey uncertainty in magnitude and di-
rection of vector data. In this work, we present a closed-form
framework for visualization of local divergence uncertainty of vec-
tor fields for the independent Gaussian uncertainty model.

3 METHODS

Let a discrete 2D vector field be represented as f : R — R? with
f = (u,v), where u and v denote horizontal (x) and vertical (y) com-

ponents of vectors. The local divergence of a vector field then cor-
responds to a scalar quantity V- f = % + 3—; The positive diver-
gence represents larger outgoing flow compared to incoming flow
(and hence, a potential source). Conversely, the negative divergence
represents a larger incoming flow compared to outgoing flow (and
hence, potential sink).

For vector field data with uncertainty, the data can be represented
as a random variable F = (U, V). In this paper, we assume that the
uncertain data are sampled on a uniform grid with grid spacing Ax
and Ay. Furthermore, we assume that each uncertain vector com-
ponent (i.e., U and V) has an independent Gaussian distribution
A (1,06%) with mean u and standard deviation . Given the afore-
mentioned assumptions, we derive the divergence uncertainty V - F.

3.1 Analytical Probabilistic Divergence

Let U; ~ JV(ui,ol-z) and V; ~ /V(/,Lj,crjz) be the Gaussian model
of the horizontal and vertical components of uncertain vector
field at a pixel (i,7). Similarly, let Uiy ~ A (Wi_1,067 ),
Uigr ~ A (Hir1,67), Vior ~ A (11,67 ), and Vi ~
N (;Lj+1,cjg+l) denote vector component distributions at local

neighbors. The divergence uncertainty at a pixel with 2D index
(i, ) is then approximated based on local neighbors according to:
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At the boundaries, the central finite differences in Eq. (1) are re-

placed with forward and backward differences. Using the addition

and multiplicative properties of Gaussian distributions, the resulting

divergence is also a Gaussian distribution V- F; ; ~ A" (u;, j,cfj)

where the mean and variance are expressed according to: k
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The closed-form expressions in Eq. (2) and Eq. (3) provide an
accurate and computationally efficient method compared to brute
force MC sampling that can be used to estimate fI; ; and é'fj.

Having derived V- F; j ~ t/V(,u,-,j,ciz‘j) in closed-form at each
grid vertex, we feed the derived Gaussian distribution to proba-
bilistic isocontour visualization algorithm proposed by Pothkow
et al. [29] for efficient visualization of level-crossing probability
(LCP). Specifically, LCP quantifies the probability of isocontour to
cross a grid cell given Gaussian-distributed data at cell vertices (in
our case, A (l; j, Gf 7). We then visualize LCP via colormapping.

3.2 Divergence Uncertainty Validation

We validate our analytical derivation for divergence probability dis-
tribution (i.e., Eq. (2) and Eq. (3)) against the MC method through a
simple 1D experiment. Specifically, the parameters of distributions
for uncertain vector components at local neighbors, i.e., U;_1, Ui+ 1,
Vi_1, and V1, are selected randomly (see the parameters listed
in Fig. 2). Then the results of the divergence probability distribu-
tion at a pixel (i, j) computed using the MC and proposed analytical
method are compared for validation in Fig. 2.

In Fig. 2, the histograms are computed using the MC sampling
approach with sample counts le + 3 (left column) and le+ 5 (right
column). In particular, for the MC sampling method, the vector
field distribution at neighboring grid locations are sampled, and em-
pirical divergence is calculated per sample according to Eq. (1). The
histogram is derived for the empirical divergence values. The red
curves in Fig. 2 are plotted corresponding to analytical distribution
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Figure 2: MC (blue curve) vs. analytical (red curve) divergence
probability distribution. The mean and standard deviation values
used are listed below the plots. The MC results are plotted for le+3
(left column) and le+ 5 (right column) samples.

A (Wi, Gf j) (Eq. (2) and Eq. (3)). The MC solution converges to
the analytical solution as the sample count increases from le + 3
and le + 5. The quantitative difference between the empirical es-
timate and analytical solution for the mean (e,,) and the standard
deviation (eg) is reported in the table at the bottom of Fig. 2. The
same shapes of the MC and analytical distributions and quantitative
convergence validate our closed-form derivation.

3.3 Viskores Parallel Algorithm

Given that the local probabilistic divergence computation is a per
grid pixel (Sec. 3.1), it is embarrassingly parallel. Thus, similar to
the previous work by Wang et al. [36] and Hari et al. [13], we par-
allelize the divergence uncertainty computation with the Viskores
library [21]. Using our Viskores algorithm, we demonstrate signif-
icant speed-up in uncertainty visualization of local divergence.

4 RESULTS

We demonstrate the performance, accuracy, and utility of our meth-
ods through experiments on wind forecast and ocean simulation
datasets. We use isocontour visualization for analyzing divergence
because it is a fundamental and widely used approach for explo-
ration and analysis of scalar fields. Furthermore, isocountours of a
divergence field help segment out sources and sinks in vector fields.
In all experiments, the timing results are averaged over 10 indepen-
dent runs for each experiment.

Wind dataset [35]: The dataset is available from the
IRI/LDEO Climate Data Library. The ensemble comprises 15
members representing the wind velocity, where all members are
sampled on a grid of resolution 68 x 68. Fig. 1 demonstrates results
of our methods by visualizing uncertainty in the wind field’s diver-
gence to provide a robust representation of potential sink regions.

Fig. 1a depicts the divergence of the mean of ensemble of veloc-
ity vector fields with an isocontour at the isovalue —2.525. Whereas
the mean-field visualization provides a clean and deterministic view
of the data, it completely obscures ensemble variability. In contrast,
the spaghetti plot in Fig. 1b, which overlays isocontours from all 15
members, effectively visualizes the spatial uncertainty and suggests
likely presence of new features that are absent or truncated in the
mean-field visualization, as illustrated by the magenta boxes. How-
ever, spaghetti plots suffer from significant over-plotting, thereby
leading to a cluttered visualization. The probabilistic map in Fig. 1c
resolves this clutter by visualizing LCP [29]. The LCP visualization
confirms the high likelihood of new sink features in the boxed re-
gion in a clear and quantifiable manner compared to the mean-field
visualization that disregards uncertainty.

The LCP visualization with classical MC sampling, however,
suffers from a performance bottleneck based on the sample and

grid size, a limitation that is addressed by our proposed analytical
derivation (Sec. 3.1). To demonstrate the computational advantage,
we compare the performance of our method against the MC ap-
proach with 1,000 samples. The MC method takes 11.87 s, whereas
our proposed analytical solution took only 0.0061 s (leading to a
speed-up of up to 1946 x) for serial implementation on the Apple
M4 processor. Furthermore, our parallel algorithm (Sec. 3.3) with
an OpenMP backend takes 0.0012 s with 10 processing threads,
leading to a speed-up of over 9891 x compared to the serial MC
algorithm. We elaborate on performance and accuracy curves for
experiments on the Red Sea dataset given its larger size than the
wind dataset.

Red Sea dataset [34]: The dataset is available on the 2020
IEEE SciVis contest website. The ensemble comprises 20 mem-
bers representing the velocity field, where all members are sampled
on a grid of resolution 500 x 500. We demonstrate efficient un-
certainty visualization using our methods to provide a more robust
visual representation of Red Sea vortex positions. For oceanolo-
gists, knowledge of the positions of the vortices in the sea plays a
critical role in understanding of energy and particle transport [34].

For our analysis, we compute the pixelwise gradient vectors of
the velocity magnitude field for each ensemble member and analyze
uncertainty of the divergence of the gradient fields to study the vor-
tex positions. The results are shown in Fig. 3. As seen in Fig. 3a-b,
the gradient fields for the two ensemble members clearly indicate
the vortex positions with all gradient vectors pointing outward, rep-
resentative of a source (positive local divergence). Figure 3c visu-
alizes colormapped local divergence of the mean of gradient fields
with isocontour for the divergence isosvalue 0.003 depicted in cyan.
The isocontour segments out the regions of positive divergence
(source) representative of vortex core. Note that the maximum di-
vergence value in the mean-field is 0.14 but large divergence values
are only at a few pixels given sufficiently high resolution of the data
(i.e., 500 x 500). Therefore, the maximum value of divergence is
mapped to 0.01 for colormapping in Fig. 3¢ to prominently high-
light positive divergence (yellow/red) regions.

Figure 3d-f visualize uncertainty with LCP. The analytically
derived visualization in Fig. 3d reveals the new potential posi-
tions of sources/vortex cores (illustrated by magenta boxes) that
are vanished or truncated in the mean-field divergence visualiza-
tion in Fig. 3c. The visualizations in Fig. 3e-f derived using 500
and 2,000 MC samples of uncertain vectors, respectively, are much
slower to compute and are of lower quality than the analytically de-
rived solution in Fig. 3d. The result derived using 500 samples took
315.174s, whereas our proposed analytical solution took only 0.28s
(leading to a speed-up of 1125.62x) for serial implementation on
the Apple M4 processor. Furthermore, our parallel Viskores algo-
rithm with OpenMP backend took 0.03s with 10 processing threads,
leading to a speed-up of 10505.8 x compared to the serial MC al-
gorithm with 500 samples. We also ran our parallel Viskores algo-
rithm on the AMD GPU on Oak Ridge National Laboratory’s Fron-
tier Supercomputer [1], which took 0.016s and exhibited a speed-
up of 19698.37x compared to the serial MC algorithm with 500
samples. Only about 2x speed-up of AMD GPU over OpenMP is
attributed to a relatively small data size to keep the GPU busy and
the overhead related to the launch of the GPU kernel. For higher
MC sample count, a further speed-up is observed.

Figure 4 shows the plots of quantitative comparison of perfor-
mance and accuracy for analytical and MC methods. Our method
on a serial processor (the red dotted curve) is far more efficient and
scalable compared to the MC sampling method (solid curves) with
increasing sample count. Furthermore, the analytical method pro-
vides an accurate solution and the sum of squared errors (SSE) of
the MC sampling solution with respect to the analytical solution
drops with an increase in the sample count. The performance and
accuracy curves for the wind dataset (Fig. 1) exhibit similar trends
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Figure 3: Visualization of divergence of the gradient of velocity magnitude field for the Red Sea dataset with 20 ensemble members. The top
row (images a and b) depicts gradient fields for the two ensemble members visualized with the arrow glyphs. The zoomed-in views indicate
source (positive divergence) positions in the gradient fields, which are representative of vortex core positions. However, the source positions
vary considerably across the two ensemble members. Image c visualizes the divergence of the mean of ensemble of gradient fields with
potential sources/vortex core positions (yellow/red regions) delineated using the isocontour (cyan) with the divergence isovalue 0.003. The
mean-field isocontour, however, does not account for uncertainty across the ensemble members. Image d visualizes probabilistic isocontour
positions derived with our analytical approach. It reveals new potential positive divergence regions indicative of likely vortex cores that are
missed or truncated in the mean-field visualization (as illustrated with the magenta boxes). The results in images e and f computed using the
classical MC approach are much less accurate and slower than the analytical result in image d.
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Figure 4: Performance and accuracy plots for the Red Sea dataset.
Our analytical method is far more efficient and accurate than the
MC sampling method.

to those for the Red Sea dataset and are not explicitly shown.

5 CONCLUSION AND FUTURE WORK

This paper addressed the critical challenge of quantifying and vi-
sualizing divergence uncertainty in vector fields, a fundamental
characteristic to understand local net flow and identify sources and
sinks. As standard MC sampling is computationally expensive for
uncertainty estimations, we derive an analytical expression of the
local flow divergence uncertainty (Sec. 3.1) under the independent
Gaussian assumption of vector data at each grid point. We par-
allelize our algorithms using the Viskores library (Sec. 3.3) and
leverage hardware acceleration to further reduce the computational
cost. We use our techniques on two simulation datasets to demon-
strate the benefits of the divergence uncertainty visualization to

identify potential sinks and sources that can be missed in determin-
istic mean-field visualization that disregards uncertainty in vector
data. The proposed analytical method with parallelization achieved
speedup up to 19698 over classical serial computation with MC
Sampling, thus enabling efficient visualization of uncertainty.

This work focuses on 2D vector fields with independent Gaus-
sian noise assumptions and does not take into account correlation
between vector components, spatial neighbors, and divergence. In
future work, we plan to extend this work to take into account corre-
lation and expand it to 3D vector fields. These improvements will
broaden the scope of our approach, enabling more robust and gen-
eralizable uncertainty-aware divergence analysis for flow data.
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